Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 91(3): 533-40, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22939636

RESUMO

Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals.


Assuntos
Proteínas de Transporte/genética , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Cílios/fisiologia , Malformações do Desenvolvimento Cortical/genética , Adolescente , Proteínas de Ciclo Celular , Linhagem Celular , Criança , Feminino , Técnicas de Inativação de Genes , Genes Recessivos , Humanos , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Mutação
2.
Mol Med ; 21: 346-54, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25910066

RESUMO

Epidemiological studies indicate that vitamin D exerts a protective effect on the development of various solid cancers. However, concerns have been raised regarding the potential deleterious role of high vitamin D levels in the development of esophageal adenocarcinoma (EAC). This study investigated genetic variation in the vitamin D receptor (VDR) in relation to its expression and risk of Barrett esophagus (BE) and EAC. VDR gene regulation was investigated by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and gel shift assays. Fifteen haplotype tagging single-nucleotide polymorphisms (SNPs) of the VDR gene were analyzed in 858 patients with reflux esophagitis (RE), BE or EAC and 202 healthy controls. VDR mRNA expression was higher in BE compared with squamous epithelium. VDR protein was located in the nucleus in BE. An rs1989969T/rs2238135G haplotype was identified in the 5' regulatory region of the VDR gene. It was associated with an approximately two-fold reduced risk of RE, BE and EAC. Analysis of a replication cohort was done for BE that confirmed this. The rs1989969T allele causes a GATA-1 transcription factor binding site to appear. The signaling of GATA-1, which is regarded as a negative transcriptional regulator, could explain the findings for rs1989969. The rs2238135G allele was associated with a significantly reduced VDR expression in BE; for the rs1989969T allele, a trend in reduced VDR expression was observed. We identified a VDR haplotype associated with reduced esophageal VDR expression and a reduced incidence of RE, BE and EAC. This VDR haplotype could be useful in identifying individuals who benefit most from vitamin D chemoprevention.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Bases , Sítios de Ligação , Estudos de Casos e Controles , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Fator de Transcrição GATA1/metabolismo , Genótipo , Haplótipos , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mucosa/metabolismo , Mucosa/patologia , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Calcitriol/metabolismo , Alinhamento de Sequência , Adulto Jovem
3.
Mol Cell Proteomics ; 11(11): 1263-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22872859

RESUMO

Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.


Assuntos
Arginina/metabolismo , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Cisteína Endopeptidases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Estabilidade Proteica
4.
Haematologica ; 98(5): 696-704, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23100274

RESUMO

ß-thalassemia is caused by mutations in the ß-globin locus resulting in loss of, or reduced, hemoglobin A (adult hemoglobin, HbA, α2ß2) production. Hydroxyurea treatment increases fetal γ-globin (fetal hemoglobin, HbF, α2γ2) expression in postnatal life substituting for the missing adult ß-globin and is, therefore, an attractive therapeutic approach. Patients treated with hydroxyurea fall into three categories: i) 'responders' who increase hemoglobin to therapeutic levels; (ii) 'moderate-responders' who increase hemoglobin levels but still need transfusions at longer intervals; and (iii) 'non-responders' who do not reach adequate hemoglobin levels and remain transfusion-dependent. The mechanisms underlying these differential responses remain largely unclear. We generated RNA expression profiles from erythroblast progenitors of 8 responder and 8 non-responder ß-thalassemia patients. These profiles revealed that hydroxyurea treatment induced differential expression of many genes in cells from non-responders while it had little impact on cells from responders. Part of the gene program up-regulated by hydroxyurea in non-responders was already highly expressed in responders before hydroxyurea treatment. Baseline HbF expression was low in non-responders, and hydroxyurea treatment induced significant cell death. We conclude that cells from responders have adapted well to constitutive stress conditions and display a propensity to proceed to the erythroid differentiation program.


Assuntos
Adaptação Biológica , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Hidroxiureia/uso terapêutico , Estresse Fisiológico , Talassemia beta/tratamento farmacológico , Talassemia beta/metabolismo , Fatores de Ribosilação do ADP/genética , Adaptação Biológica/genética , Apoptose/genética , Diferenciação Celular , Análise por Conglomerados , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células Precursoras Eritroides/efeitos dos fármacos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Hemoglobina A/metabolismo , Humanos , Estresse Fisiológico/genética , Resultado do Tratamento , Talassemia beta/genética , gama-Globinas/genética
5.
Inflamm Bowel Dis ; 29(2): 195-206, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356046

RESUMO

BACKGROUND: Patient-derived organoid (PDO) models offer potential to transform drug discovery for inflammatory bowel disease (IBD) but are limited by inconsistencies with differentiation and functional characterization. We profiled molecular and cellular features across a range of intestinal organoid models and examined differentiation and establishment of a functional epithelial barrier. METHODS: Patient-derived organoids or monolayers were generated from control or IBD patient-derived colon or ileum and were molecularly or functionally profiled. Biological or technical replicates were examined for transcriptional responses under conditions of expansion or differentiation. Cell-type composition was determined by deconvolution of cell-associated gene signatures and histological features. Differentiated control or IBD-derived monolayers were examined for establishment of transepithelial electrical resistance (TEER), loss of barrier integrity in response to a cocktail of interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and prevention of cytokine-induced barrier disruption by the JAK inhibitor, tofacitinib. RESULTS: In response to differentiation media, intestinal organoids and monolayers displayed gene expression patterns consistent with maturation of epithelial cell types found in the human gut. Upon differentiation, both colon- and ileum-derived monolayers formed functional barriers, with sustained TEER. Barrier integrity was compromised by inflammatory cytokines IFN-γ and TNF-α, and damage was inhibited in a dose-dependent manner by tofacitinib. CONCLUSIONS: We describe the generation and characterization of human colonic or ileal organoid models capable of functional differentiation to mature epithelial cell types. In monolayer culture, these cells formed a robust epithelial barrier with sustained TEER and responses to pharmacological modulation. Our findings demonstrate that control and IBD patient-derived organoids possess consistent transcriptional and functional profiles that can enable development of epithelial-targeted therapies.


Assuntos
Doenças Inflamatórias Intestinais , Intestinos , Organoides , Humanos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Organoides/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Intestinos/fisiologia
6.
Eur J Pharm Sci ; 188: 106481, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244450

RESUMO

Intestinal organoids derived from LGR5+ adult stem cells allow for long-term culturing, more closely resemble human physiology than traditional intestinal models, like Caco-2, and have been established for several species. Here we evaluated intestinal organoids for drug disposition, metabolism, and safety applications. Enterocyte-enriched human duodenal organoids were cultured as monolayers to enable bidirectional transport studies. 3D enterocyte-enriched human duodenal and colonic organoids were incubated with probe substrates of major intestinal drug metabolizing enzymes (DMEs). To distinguish human intestinal toxic (high incidence of diarrhea in clinical trials and/or black box warning related to intestinal side effects) from non-intestinal toxic compounds, ATP-based cell viability was used as a readout, and compounds were ranked based on their IC50 values in relation to their 30-times maximal total plasma concentration (Cmax). To assess if rat and dog organoids reproduced the respective in vivo intestinal safety profiles, ATP-based viability was assessed in rat and dog organoids and compared to in vivo intestinal findings when available. Human duodenal monolayers discriminated high and low permeable compounds and demonstrated functional activity for the main efflux transporters Multi drug resistant protein 1 (MDR1, P-glycoprotein P-gp) and Breast cancer resistant protein (BCRP). Human 3D duodenal and colonic organoids also showed metabolic activity for the main intestinal phase I and II DMEs. Organoids derived from specific intestinal segments showed activity differences in line with reported DMEs expression. Undifferentiated human organoids accurately distinguished all but one compound from the test set of non-toxic and toxic drugs. Cytotoxicity in rat and dog organoids correlated with preclinical toxicity findings and observed species sensitivity differences between human, rat, and dog organoids. In conclusion, the data suggest intestinal organoids are suitable in vitro tools for drug disposition, metabolism, and intestinal toxicity endpoints. The possibility to use organoids from different species, and intestinal segment holds great potential for cross-species and regional comparisons.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Adulto , Humanos , Animais , Cães , Ratos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células CACO-2 , Organoides , Trifosfato de Adenosina
7.
Blood ; 116(20): 4349-52, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20688955

RESUMO

An estimated 6% to 7% of the earth's population carries a mutation affecting red blood cell function. The ß-thalassemias and sickle cell disease are the most common monogenic disorders caused by these mutations. Increased levels of γ-globin ameliorate the severity of these diseases because fetal hemoglobin (HbF; α2γ2) can effectively replace adult hemoglobin (HbA; α2ß2) and counteract polymerization of sickle hemoglobin (HbS; α2ß(S)2). Therefore, understanding the molecular mechanism of globin switching is of biologic and clinical importance. Here, we show that the recently identified chromatin factor Friend of Prmt1 (FOP) is a critical modulator of γ-globin gene expression. Knockdown of FOP in adult erythroid progenitors strongly induces HbF. Importantly, γ-globin expression can be elevated in cells from ß-thalassemic patients by reducing FOP levels. These observations identify FOP as a novel therapeutic target in ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Hemoglobina Fetal/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Fatores de Transcrição/genética
8.
Clin Exp Pharmacol Physiol ; 39(6): 510-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22469229

RESUMO

1. Hydroxyurea (HU) is a drug used for the treatment of haemoglobinopathies. Hydroxyurea functions by upregulating γ-globin transcription and fetal haemoglobin (HbF) production in erythroid cells. The K562 erythroleukaemia cell line is widely used as a model system in which to study the mechanism of γ-globin induction by HU. However, the transcription factors required for the upregulation of γ-globin expression by HU in K562 cells have not been identified. Similarities between the HU and sodium butyrate (SB) pathways suggest cAMP response element-binding protein (CREB) 1 as a potential candidate. Thus, the aim of the present study was to investigate the possible role of CREB1 in the HU pathway. 2. Experiments were performed using transient and stable RNA interference (RNAi) to show that CREB1 is necessary for HU-mediated induction of γ-globin expression and haemoglobin production in K562 cells. 3. Furthermore, western blot analyses demonstrated that CREB1 becomes phosphorylated in a dose-dependent manner after HU (100-400 µmol/L) treatment of K562 cells for 72 h. 4. We also investigated role of a Gγ promoter CREB1 response element (G-CRE) in this pathway. Quantitative amplification refractory mutation system-polymerase chain reaction experiments were performed to demonstrate that HU induces the expression of both Gγ and Aγ in this cell line. In addition, electrophoretic mobility shift assays were used to show that levels of CREB1 complexes binding to the G-CRE site are increased following HU treatment and are decreased in CREB1-knockdown cells. 5. The results suggest that CREB1 is necessary for γ-globin induction by HU in K562 cells, a role that may be mediated, in part, through the G-CRE element.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Regulação Neoplásica da Expressão Gênica , Hidroxiureia/farmacologia , gama-Globinas/biossíntese , gama-Globinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Hemoglobinas/biossíntese , Humanos , Células K562 , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
9.
Haematologica ; 96(9): 1252-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21606163

RESUMO

BACKGROUND: In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been established. DESIGN AND METHODS: To study the role of Hmg20b in erythropoiesis, we performed knockdown experiments in a differentiation-competent mouse fetal liver cell line, and in primary mouse fetal liver cells. The effects on globin gene expression were determined. We used microarrays to investigate global gene expression changes induced by Hmg20b knockdown. Functional analysis was carried out on Hrasls3, an Hmg20b target gene. RESULTS: We show that Hmg20b depletion induces spontaneous differentiation. To identify the target genes of Hmg20b, microarray analysis was performed on Hmg20b knockdown cells and controls. In line with its association to the CoREST complex, we found that 85% (527 out of 620) of the deregulated genes are up-regulated when Hmg20b levels are reduced. Among the few down-regulated genes was Gfi1b, a known repressor of erythroid differentiation. Among the consistently up-regulated targets were embryonic ß-like globins and the phospholipase HRAS-like suppressor 3 (Hrasls3). We show that Hrasls3 expression is induced during erythroid differentiation and that knockdown of Hrasls3 inhibits terminal differentiation of proerythroblasts. CONCLUSIONS: We conclude that Hmg20b acts as an inhibitor of erythroid differentiation, through the down-regulation of genes involved in differentiation such as Hrasls3, and activation of repressors of differentiation such as Gfi1b. In addition, Hmg20b suppresses embryonic ß-like globins.


Assuntos
Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Correpressoras , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
10.
J Vis Exp ; (173)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398137

RESUMO

In the past, intestinal epithelial model systems were limited to transformed cell lines and primary tissue. These model systems have inherent limitations as the former do not faithfully represent original tissue physiology, and the availability of the latter is limited. Hence, their application hampers fundamental and drug development research. Adult stem-cell-based organoids (henceforth referred to as organoids) are miniatures of normal or diseased epithelial tissue from which they are derived. They can be established very efficiently from different gastrointestinal (GI) tract regions, have long-term expandability, and simulate tissue- and patient-specific responses to treatments in vitro. Here, the establishment of intestinal organoid-derived epithelial monolayers has been demonstrated along with methods to measure epithelial barrier integrity, permeability and transport, antimicrobial protein secretion, as well as histology. Moreover, intestinal organoid-derived monolayers can be enriched with proliferating stem and transit-amplifying cells as well as with key differentiated epithelial cells. Therefore, they represent a model system that can be tailored to study the effects of compounds on target cells and their mode of action. Although organoid cultures are technically more demanding than cell lines, once established, they can reduce failures in the later stages of drug development as they truly represent in vivo epithelium complexity and interpatient heterogeneity.


Assuntos
Mucosa Intestinal , Organoides , Linhagem Celular , Células Epiteliais , Humanos , Intestinos
11.
Elife ; 102021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328417

RESUMO

The molecular events that drive hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum. HBV-infected organoids produced covalently closed circular DNA (cccDNA) and HBV early antigen (HBeAg), expressed intracellular HBV RNA and proteins, and produced infectious HBV. This ex vivo HBV-infected primary differentiated hepatocyte organoid platform was amenable to drug screening for both anti-HBV activity and drug-induced toxicity. We also studied HBV replication in transgenically modified organoids; liver organoids exogenously overexpressing the HBV receptor sodium taurocholate co-transporting polypeptide (NTCP) after lentiviral transduction were not more susceptible to HBV, suggesting the necessity for additional host factors for efficient infection. We also generated transgenic organoids harboring integrated HBV, representing a long-term culture system also suitable for viral production and the study of HBV transcription. Finally, we generated HBV-infected patient-derived liver organoids from non-tumor cirrhotic tissue of explants from liver transplant patients. Interestingly, transcriptomic analysis of patient-derived liver organoids indicated the presence of an aberrant early cancer gene signature, which clustered with the hepatocellular carcinoma (HCC) cohort on The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset and away from healthy liver tissue, and may provide invaluable novel biomarkers for the development of HCC and surveillance in HBV-infected patients.


Assuntos
Carcinoma Hepatocelular/virologia , Hepatite B/virologia , Neoplasias Hepáticas/virologia , Organoides/virologia , Células Hep G2 , Hepatite B/complicações , Vírus da Hepatite B/patogenicidade , Humanos , Fígado/patologia , Fígado/virologia , Doadores Vivos , Modelos Biológicos , Replicação Viral
12.
BMC Mol Biol ; 10: 6, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19196479

RESUMO

BACKGROUND: Chromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. RESULTS: Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. CONCLUSION: The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes.


Assuntos
Biotina/metabolismo , Imunoprecipitação da Cromatina/métodos , Epitopos/metabolismo , Aminoácidos/química , Animais , Anticorpos/metabolismo , Biotina/química , Linhagem Celular Tumoral , Formaldeído/metabolismo , Fator de Transcrição GATA1/metabolismo , Camundongos
13.
Ann Hematol ; 88(6): 549-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19050890

RESUMO

Nondeletional hereditary persistence of fetal hemoglobin (nd-HPFH), a rare hereditary condition resulting in elevated levels of fetal hemoglobin (Hb F) in adults, is associated with promoter mutations in the human fetal globin (HBG1 and HBG2) genes. In this paper, we report a novel type of nd-HPFH due to a HBG2 gene promoter mutation (HBG2:g.-109G>T). This mutation, located at the 3' end of the HBG2 distal CCAAT box, was initially identified in an adult female subject of Central Greek origin and results in elevated Hb F levels (4.1%) and significantly increased Ggamma-globin chain production (79.2%). Family studies and DNA analysis revealed that the HBG2:g.-109G>T mutation is also found in the family members in compound heterozygosity with the HBG2:g.-158C>T single nucleotide polymorphism or the silent HBB:g.-101C>T beta-thalassemia mutation, resulting in the latter case in significantly elevated Hb F levels (14.3%). Electrophoretic mobility shift analysis revealed that the HBG2:g.-109G>T mutation abolishes a transcription factor binding site, consistent with previous observations using DNA footprinting analysis, suggesting that guanine at position HBG2/1:g.-109 is critical for NF-E3 binding. These data suggest that the HBG2:g-109G>T mutation has a functional role in increasing HBG2 transcription and is responsible for the HPFH phenotype observed in our index cases.


Assuntos
Hemoglobina Fetal/metabolismo , Regiões Promotoras Genéticas/genética , Idoso , Feminino , Hemoglobina Fetal/genética , Deleção de Genes , Humanos , Masculino , Dados de Sequência Molecular , Mutação/genética , Linhagem , Análise de Sequência de DNA
14.
Cell Rep ; 29(8): 2505-2519.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747616

RESUMO

Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data, we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development, which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.


Assuntos
Neutrófilos/citologia , Neutrófilos/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Granulócitos/citologia , Granulócitos/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Proteômica/métodos
15.
Oncotarget ; 9(39): 25647-25660, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876014

RESUMO

Epigenomic alterations have been associated with both pathogenesis and progression of cancer. Here, we analyzed the epigenome of two high-risk APL (hrAPL) patients and compared it to non-high-risk APL cases. Despite the lack of common genetic signatures, we found that human hrAPL blasts from patients with extremely poor prognosis display specific patterns of histone H3 acetylation, specifically hyperacetylation at a common set of enhancer regions. In addition, unique profiles of the repressive marks H3K27me3 and DNA methylation were exposed in high-risk APLs. Epigenetic comparison with low/intermediate-risk APLs and AMLs revealed hrAPL-specific patterns of histone acetylation and DNA methylation, suggesting these could be further developed into markers for clinical identification. The epigenetic drug MC2884, a newly generated general HAT/EZH2 inhibitor, induces apoptosis of high-risk APL blasts and reshapes their epigenomes by targeting both active and repressive marks. Together, our analysis uncovers distinctive epigenome signatures of hrAPL patients, and provides proof of concept for use of epigenome profiling coupled to epigenetic drugs to 'personalize' precision medicine.

16.
Cell Rep ; 24(10): 2784-2794, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184510

RESUMO

Neutrophils are short-lived blood cells that play a critical role in host defense against infections. To better comprehend neutrophil functions and their regulation, we provide a complete epigenetic overview, assessing important functional features of their differentiation stages from bone marrow-residing progenitors to mature circulating cells. Integration of chromatin modifications, methylation, and transcriptome dynamics reveals an enforced regulation of differentiation, for cellular functions such as release of proteases, respiratory burst, cell cycle regulation, and apoptosis. We observe an early establishment of the cytotoxic capability, while the signaling components that activate these antimicrobial mechanisms are transcribed at later stages, outside the bone marrow, thus preventing toxic effects in the bone marrow niche. Altogether, these data reveal how the developmental dynamics of the chromatin landscape orchestrate the daily production of a large number of neutrophils required for innate host defense and provide a comprehensive overview of differentiating human neutrophils.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos
17.
Iran J Public Health ; 46(7): 948-956, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28845406

RESUMO

BACKGROUND: The hematologic response to hydroxyurea (HU) is varied among ß-thalassemia (BT) patients. The BCL11A and SOX6 genes are involved in response to HU. This study aimed to investigate the in-vitro responsiveness of HU among BT major patients homozygote for IVSII-1G>A mutation and XmnI single nucleotide polymorphism (SNP) in order to find whether the in-vitro Hb concentration is a predictor of clinical (HU) responsiveness. METHODS: In this case-control study, twenty BT patients homozygote for IVSII-1G>A mutation and XmnI SNP from Thalassemia Research Center, Sari, Iran in 2015 were selected and categorized into two groups of 10 Responder (R) and 10 Non-Responder (NR) according to their clinical HU response. Ten healthy individuals as a control group were also selected. Hematopoietic erythroid progenitors were expanded from peripheral blood. Hb concentration was measured using photometry method. The flow cytometry and real-time PCR methods were applied for the analysis of cell surface markers (CD71 and CD235a) and gene expression (BCL11A and SOX6), respectively. RESULTS: R and NR groups produced higher amount of Basic Hb than C group in cell culture medium at day 14 (P<0.05). After HU treatment, in R group, Hb levels was significantly elevated in comparison to NR and C group (P<0.05). BCL11A expression was decreased after exposure to HU in all groups while SOX6 expression was only down-regulated in C group, and its expression was increased in R and NR groups after HU treatment. CONCLUSION: Since different factors including wide networks of intracellular factors and individual differences between patients can affect response to HU in patients, the increasing Hemoglobin on culture medium alone cannot predict clinical responsiveness to that drug.

18.
Hum Mutat ; 27(6): 598-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705699

RESUMO

The National Mutation Frequency Databases are continuously updated mutation depositories, which contain extensive information over the described genetic heterogeneity of an ethnic group or population. Here, we report the construction of the Cypriot (http://www.goldenhelix.org/cypriot) and Iranian National Mutation Frequency Databases (http://www.goldenhelix.org/iranian), both derived from an academic effort to provide high quality and up-to-date information on the underlying genetic heterogeneity of inherited disorders in the Cypriot and Iranian populations, respectively. Both databases have been built and maintained online using ETHNOS platform, a specialized software, which provides the means for national mutation database construction and curation. Each database contains brief summaries of the various genetic disorders studied for each population, and an easy-to-use query interface provides, both to specialist as well as to non-specialist users (i.e. patients and their families), instant access to the list and frequencies of the different mutations responsible for the inherited disorders in these populations. Furthermore, numerous links to the respective Online Mendelian Inheritance in Man (OMIM) entries and, when available, to the locus-specific databases fruitfully integrate the databases content into a single Web site. Both databases can serve as valuable online tools for molecular genetic testing of inherited disorders in these populations and could potentially motivate further investigations of yet unknown genetic diseases in the Cypriot and Iranian populations.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Mutação , Chipre/epidemiologia , Frequência do Gene , Testes Genéticos , Genética Populacional , Irã (Geográfico)/epidemiologia
19.
Cell Rep ; 17(8): 2101-2111, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851971

RESUMO

DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.


Assuntos
Imunidade Adaptativa/genética , Metilação de DNA/genética , Imunidade Inata/genética , Linfócitos B/metabolismo , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Fosfatos de Dinucleosídeos/genética , Éxons/genética , Humanos , Linfócitos/metabolismo , Células Mieloides/metabolismo , Nucleossomos
20.
Ann N Y Acad Sci ; 1054: 55-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16339652

RESUMO

We have described the application of a simple biotinylation tagging approach for the direct purification of tagged transcription factor complexes, based on the use of artificial short peptide tags that are specifically and efficiently biotinylated by the bacterial BirA biotin ligase, which is co-expressed in cells with the tagged factor. We used this approach to initially characterize complexes formed by the hematopoietic transcription factor GATA-1 in erythroid cells. GATA-1 is essential for the erythroid differentiation, its functions encompassing upregulation of erythroid genes, repression of alternative transcription programs, and suppression of cell proliferation. However, it was not clear how all of these GATA-1 functions are mediated. Our work describes, for the first time, distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex, and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. We also provide evidence that distinct GATA-1 complexes are associated with specific GATA-1 functions in erythroid differentiation, for example, GATA-1/Gfi-1b with the suppression of cell proliferation and GATA-1/FOG-1/MeCP1 with the repression of other hematopoietic transcription programs. We next applied the biotinylation tag to Ldb-1, a known partner of GATA-1, and characterized a number of novel interaction partners that are essential in erythroid development, in particular, Eto-2, Lmo4, and CdK9. Last, we are in the process of applying the same technology to characterize the factors that are bound to the suppressed gamma-globin promoter in vivo.


Assuntos
Biotinilação , Proteínas Sanguíneas/isolamento & purificação , Fator de Transcrição GATA1/fisiologia , Espectrometria de Massas/métodos , Proteínas Nucleares/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Animais , Proteínas Sanguíneas/biossíntese , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/fisiologia , Carbono-Nitrogênio Ligases/farmacologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/química , Células Eritroides/química , Proteínas de Escherichia coli/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Globinas/biossíntese , Globinas/genética , Hematopoese/genética , Leucemia Eritroblástica Aguda/patologia , Substâncias Macromoleculares , Camundongos , Proteínas Nucleares/fisiologia , Mapeamento de Interação de Proteínas , Proteínas Repressoras/farmacologia , Fatores de Transcrição/farmacologia , Fatores de Transcrição/fisiologia , Peixe-Zebra/sangue , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA