Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 39(23): e104369, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124732

RESUMO

Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP-A, VAP-B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP-A, VAP-B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non-conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non-conventional FFAT motifs (named Phospho-FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho-FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho-FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER-endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter-organelle contacts.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Receptores de Quimiocinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Humanos , Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
2.
Nucleic Acids Res ; 48(17): 9969-9985, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32974652

RESUMO

Retinoic acid receptors (RARs) as a functional heterodimer with retinoid X receptors (RXRs), bind a diverse series of RA-response elements (RAREs) in regulated genes. Among them, the non-canonical DR0 elements are bound by RXR-RAR with comparable affinities to DR5 elements but DR0 elements do not act transcriptionally as independent RAREs. In this work, we present structural insights for the recognition of DR5 and DR0 elements by RXR-RAR heterodimer using x-ray crystallography, small angle x-ray scattering, and hydrogen/deuterium exchange coupled to mass spectrometry. We solved the crystal structures of RXR-RAR DNA-binding domain in complex with the Rarb2 DR5 and RXR-RXR DNA-binding domain in complex with Hoxb13 DR0. While cooperative binding was observed on DR5, the two molecules bound non-cooperatively on DR0 on opposite sides of the DNA. In addition, our data unveil the structural organization and dynamics of the multi-domain RXR-RAR DNA complexes providing evidence for DNA-dependent allosteric communication between domains. Differential binding modes between DR0 and DR5 were observed leading to differences in conformation and structural dynamics of the multi-domain RXR-RAR DNA complexes. These results reveal that the topological organization of the RAR binding element confer regulatory information by modulating the overall topology and structural dynamics of the RXR-RAR heterodimers.


Assuntos
Sítio Alostérico , Elementos de Resposta , Receptores X de Retinoides/química , Regulação Alostérica , DNA/química , DNA/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores X de Retinoides/metabolismo
3.
J Am Chem Soc ; 143(9): 3330-3339, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635059

RESUMO

The design of catalytic proteins with functional sites capable of specific chemistry is gaining momentum and a number of artificial enzymes have recently been reported, including hydrolases, oxidoreductases, retro-aldolases, and others. Our goal is to develop a peptide ligase for robust catalysis of amide bond formation that possesses no stringent restrictions to the amino acid composition at the ligation junction. We report here the successful completion of the first step in this long-term project by building a completely de novo protein with predefined acyl transfer catalytic activity. We applied a minimalist approach to rationally design an oxyanion hole within a small cavity that contains an adjacent thiol nucleophile. The N-terminus of the α-helix with unpaired hydrogen-bond donors was exploited as a structural motif to stabilize negatively charged tetrahedral intermediates in nucleophilic addition-elimination reactions at the acyl group. Cysteine acting as a principal catalytic residue was introduced at the second residue position of the α-helix N-terminus in a designed three-α-helix protein based on structural informatics prediction. We showed that this minimal set of functional elements is sufficient for the emergence of catalytic activity in a de novo protein. Using peptide-αthioesters as acyl-donors, we demonstrated their catalyzed amidation concomitant with hydrolysis and proved that the environment at the catalytic site critically influences the reaction outcome. These results represent a promising starting point for the development of efficient catalysts for protein labeling, conjugation, and peptide ligation.


Assuntos
Domínio Catalítico , Peptídeo Sintases/química , Aciltransferases/síntese química , Aciltransferases/química , Sequência de Aminoácidos , Biocatálise , Cisteína/química , Hidrólise , Cinética , Peptídeo Sintases/síntese química , Peptídeos/síntese química , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Especificidade por Substrato
4.
Bioorg Chem ; 98: 103750, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182520

RESUMO

Aminobenzosuberone-based PfA-M1 inhibitors were explored as novel antimalarial agents against two different Plasmodium falciparum strains. The 4-phenyl derivative 7c exhibited the most encouraging growth inhibitory activity with IC50 values of 6.5-11.2 µM. X-ray crystal structures and early assessment of DMPK/ADME-Tox parameters allowed us to initiate structure-based drug design approach and understand the liabilities (such as potential metabolic and aqueous solubility issues) as well as identify the opportunities for improvement of this aminobenzosuberone series. It also suggested that compound 7c should be regarded as an attractive chemical tool to investigate the different biological roles of this multifunctional PfA-M1 protein.


Assuntos
Aminopeptidases/antagonistas & inibidores , Anisóis/farmacologia , Antimaláricos/farmacologia , Cicloeptanos/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Aminopeptidases/metabolismo , Anisóis/síntese química , Anisóis/química , Antimaláricos/síntese química , Antimaláricos/química , Cicloeptanos/síntese química , Cicloeptanos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
5.
PLoS Biol ; 11(12): e1001726, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311986

RESUMO

Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration.


Assuntos
Movimento Celular/fisiologia , Fator 4 Associado a Receptor de TNF/fisiologia , Junções Íntimas/fisiologia , Animais , Células COS , Membrana Celular/fisiologia , Chlorocebus aethiops , Humanos , Fosfatidilinositóis/fisiologia , Proteínas Recombinantes
6.
Methods Mol Biol ; 2406: 281-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089564

RESUMO

Rapid preparation of proteins for functional and structural analysis is a major challenge both in academia and industry. The number potential targets continuously increases and many are difficult to express proteins which, when produced in bacteria, result in insoluble and/or misfolded recombinant proteins, protein aggregates, or unusable low protein yield. We focus here on the baculovirus expression vector system which is now commonly used for heterologous production of human targets. This chapter describes simple and cost-effective protocols that enable iterative cycles of construct design, expression screening and optimization of protein production. We detail time- and cost-effective methods for generation of baculoviruses by homologous recombination and titer evaluation. Handling of insect cell cultures and preparation of bacmid for cotransfection are also presented.


Assuntos
Baculoviridae , Vetores Genéticos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Técnicas de Cultura de Células , Vetores Genéticos/genética , Humanos , Insetos/genética , Insetos/metabolismo , Proteínas Recombinantes/metabolismo
7.
Nat Commun ; 13(1): 6849, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369230

RESUMO

Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Camundongos , Dinamina II/genética , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Fenótipo , Isoformas de Proteínas/genética
8.
Mol Cell Endocrinol ; 481: 44-52, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476562

RESUMO

Retinoid X Receptors (RXRs) act as dimer partners for several nuclear receptors including itself, binding to genomic DNA response elements and regulating gene transcription with cell and gene specificity. As homodimers, RXRs bind direct repeats of the half-site (A/G)G(G/T)TCA separated by 1 nucleotide (DR1) and little variability of this consensus site is observed for natural DR1s. However, these variations are responsible of the modulation of RXR receptors function through differential binding affinity and conformational changes. To further our understanding of the molecular mechanisms underlying RXR-DNA interactions, we examined how RXR DBDs bind to different DR1s using thermodynamics, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. We show that the half-site sequences modulate the binding cooperativity that results from the protein-protein contacts between the two DBDs. Chemical shifts perturbation NMR experiments revealed that sequence variations in half-sites induce changes that propagate from the protein-DNA interface to the dimerization interface throughout the DBD fold.


Assuntos
DNA/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
9.
Sci Rep ; 5: 8216, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25645674

RESUMO

Retinoid X receptors (RXRs) act as homodimers or heterodimerisation partners of class II nuclear receptors. RXR homo- and heterodimers bind direct repeats of the half-site (A/G)G(G/T)TCA separated by 1 nucleotide (DR1). We present a structural characterization of RXR-DNA binding domain (DBD) homodimers on several natural DR1s and an idealized symmetric DR1. Homodimers displayed asymmetric binding, with critical high-affinity interactions accounting for the 3' positioning of RXR in heterodimers on DR1s. Differing half-site and spacer DNA sequence induce changes in RXR-DBD homodimer conformation notably in the dimerization interface such that natural DR1s are bound with higher affinity than an idealized symmetric DR1. Subtle changes in the consensus DR1 DNA sequence therefore specify binding affinity through altered RXR-DBD-DNA contacts and changes in DBD conformation suggesting a general model whereby preferential half-site recognition determines polarity of heterodimer binding to response elements.


Assuntos
Receptores X de Retinoides/genética , Sequência de Bases , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Dimerização , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Elementos de Resposta/genética , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo
10.
Science ; 339(6120): 694-8, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23393263

RESUMO

E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the focal adhesion protein paxillin and the ubiquitin ligase E6AP, respectively. In both E6 proteins, two zinc domains and a linker helix form a basic-hydrophobic pocket, which captures helical LxxLL motifs in a way compatible with other interaction modes. Mutational inactivation of the LxxLL binding pocket disrupts the oncogenic activities of both E6 proteins. This work reveals the structural basis of both the multifunctionality and the oncogenicity of E6 proteins.


Assuntos
Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Paxilina/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Papillomavirus Bovino 1 , Cristalografia por Raios X , Papillomavirus Humano 16 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/genética , Paxilina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
PLoS One ; 7(6): e39550, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745782

RESUMO

CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC) liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40) hydrocarbon substrate.


Assuntos
Oxirredutases/química , Oxirredutases/metabolismo , Pantoea/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , cis-trans-Isomerases/química , cis-trans-Isomerases/metabolismo
12.
PLoS One ; 5(11): e15119, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152046

RESUMO

Retinoic acid receptors (RARs) and Retinoid X nuclear receptors (RXRs) are ligand-dependent transcriptional modulators that execute their biological action through the generation of functional heterodimers. RXR acts as an obligate dimer partner in many signalling pathways, gene regulation by rexinoids depending on the liganded state of the specific heterodimeric partner. To address the question of the effect of rexinoid antagonists on RAR/RXR function, we solved the crystal structure of the heterodimer formed by the ligand binding domain (LBD) of the RARα bound to its natural agonist ligand (all-trans retinoic acid, atRA) and RXRα bound to a rexinoid antagonist (LG100754). We observed that RARα exhibits the canonical agonist conformation and RXRα an antagonist one with the C-terminal H12 flipping out to the solvent. Examination of the protein-LG100754 interactions reveals that its propoxy group sterically prevents the H12 associating with the LBD, without affecting the dimerization or the active conformation of RAR. Although LG100754 has been reported to act as a 'phantom ligand' activating RAR in a cellular context, our structural data and biochemical assays demonstrate that LG100754 mediates its effect as a full RXR antagonist. Finally we show that the 'phantom ligand effect' of the LG100754 is due to a direct binding of the ligand to RAR that stabilizes coactivator interactions thus accounting for the observed transcriptional activation of RAR/RXR.


Assuntos
Receptores do Ácido Retinoico/química , Receptores X de Retinoides/química , Retinoides/química , Tetra-Hidronaftalenos/química , Tretinoína/química , Animais , Sítios de Ligação , Ligação Competitiva , Polarização de Fluorescência , Humanos , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Receptor Cross-Talk , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptor alfa de Ácido Retinoico , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Retinoides/metabolismo , Espalhamento a Baixo Ângulo , Tetra-Hidronaftalenos/metabolismo , Tretinoína/metabolismo , Difração de Raios X
13.
J Struct Funct Genomics ; 6(2-3): 81-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16211503

RESUMO

Structural genomics programs are distributed worldwide and funded by large institutions such as the NIH in United-States, the RIKEN in Japan or the European Commission through the SPINE network in Europe. Such initiatives, essentially managed by large consortia, led to technology and method developments at the different steps required to produce biological samples compatible with structural studies. Besides specific applications, method developments resulted mainly upon miniaturization and parallelization. The challenge that academic laboratories faces to pursue structural genomics programs is to produce, at a higher rate, protein samples. The Structural Biology and Genomics Department (IGBMC - Illkirch - France) is implicated in a structural genomics program of high eukaryotes whose goal is solving crystal structures of proteins and their complexes (including large complexes) related to human health and biotechnology. To achieve such a challenging goal, the Department has established a medium-throughput pipeline for producing protein samples suitable for structural biology studies. Here, we describe the setting up of our initiative from cloning to crystallization and we demonstrate that structural genomics may be manageable by academic laboratories by strategic investments in robotic and by adapting classical bench protocols and new developments, in particular in the field of protein expression, to parallelization.


Assuntos
Laboratórios , Proteínas/isolamento & purificação , Proteômica/instrumentação , Proteômica/métodos , Cristalização/métodos , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA