Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Metab Syndr Relat Disord ; 2(1): 49-56, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-18370676

RESUMO

Insulin resistance occurs frequently in metabolic syndrome components, obesity, and the polycystic ovary syndrome, and is partly due to impaired glucose transport into skeletal muscle, but underlying mechanisms are uncertain. Atypical protein kinase C and protein kinase B, operating downstream of phosphatidylinositol 3-kinase, mediate insulin effects on glucose transport, but their importance in these syndromes is poorly understood. Presently, we examined these signaling factors in muscle biopsies obtained during euglycemic/hyperinsulinemic clamp studies. In lean subjects, insulin provoked approximately twofold increases in muscle atypical protein kinase C activity. In obese subjects and obese subjects who had evidence of the polycystic ovary syndrome, insulin-stimulated glucose disposal and atypical protein kinase C activation were diminished, whereas activation of insulin receptor substrate-1-dependent phosphatidylinositol 3-kinase and protein kinase B trended lower, but not significantly. Interestingly, direct activation of atypical protein kinase C by phosphatidylinositol-3,4,5-(PO(4))(3), the lipid product of phosphatidylinositol 3-kinase, was readily apparent in immunoprecipitates prepared from muscles of lean subjects, but to a lesser degree or poorly if at all in subjects who were obese or had the obesity/polycystic ovary syndrome. Our findings suggest that activation of muscle atypical protein kinase C by insulin and phosphatidylinositol-3,4,5-(PO(4))(3) is defective and may contribute to skeletal muscle insulin resistance in women who are obese, or have obesity associated with the polycystic ovary syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA