Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(5): 853-861, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477694

RESUMO

APCs such as dendritic cells and macrophages play a pivotal role in mediating immune tolerance and restoring intestinal immune homeostasis by limiting inflammatory responses against commensal bacteria. However, cell-intrinsic molecular regulators critical for programming intestinal APCs to a regulatory state rather than an inflammatory state are unknown. In this study, we report that the transcription factor retinoid X receptor α (RXRα) signaling in CD11c+ APCs is essential for suppressing intestinal inflammation by imparting an anti-inflammatory phenotype. Using a mouse model of ulcerative colitis, we demonstrated that targeted deletion of RXRα in CD11c+ APCs in mice resulted in the loss of T cell homeostasis with enhanced intestinal inflammation and increased histopathological severity of colonic tissue. This was due to the increased production of proinflammatory cytokines that drive Th1/Th17 responses and decreased expression of immune-regulatory factors that promote regulatory T cell differentiation in the colon. Consistent with these findings, pharmacological activation of the RXRα pathway alleviated colitis severity in mice by suppressing the expression of inflammatory cytokines and limiting Th1/Th17 cell differentiation. These findings identify an essential role for RXRα in APCs in regulating intestinal immune homeostasis and inflammation. Thus, manipulating the RXRα pathway could provide novel opportunities for enhancing regulatory responses and dampening colonic inflammation.


Assuntos
Colite , Fatores de Transcrição , Animais , Camundongos , Colo , Citocinas/metabolismo , Homeostase , Inflamação , Mucosa Intestinal , Intestinos/patologia , Camundongos Endogâmicos C57BL , Receptor X Retinoide alfa , Fatores de Transcrição/metabolismo
2.
J Immunol ; 209(2): 368-378, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760519

RESUMO

Extraintestinal manifestations are common in inflammatory bowel disease and involve several organs, including the kidney. However, the mechanisms responsible for renal manifestation in inflammatory bowel disease are not known. In this study, we show that the Wnt-lipoprotein receptor-related proteins 5 and 6 (LRP5/6) signaling pathway in macrophages plays a critical role in regulating colitis-associated systemic inflammation and renal injury in a murine dextran sodium sulfate-induced colitis model. Conditional deletion of the Wnt coreceptors LRP5/6 in macrophages in mice results in enhanced susceptibility to dextran sodium sulfate colitis-induced systemic inflammation and acute kidney injury (AKI). Furthermore, our studies show that aggravated colitis-associated systemic inflammation and AKI observed in LRP5/6LysM mice are due to increased bacterial translocation to extraintestinal sites and microbiota-dependent increased proinflammatory cytokine levels in the kidney. Conversely, depletion of the gut microbiota mitigated colitis-associated systemic inflammation and AKI in LRP5/6LysM mice. Mechanistically, LRP5/6-deficient macrophages were hyperresponsive to TLR ligands and produced higher levels of proinflammatory cytokines, which are associated with increased activation of MAPKs. These results reveal how the Wnt-LRP5/6 signaling in macrophages controls colitis-induced systemic inflammation and AKI.


Assuntos
Injúria Renal Aguda , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Injúria Renal Aguda/metabolismo , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Rim/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/genética
3.
Immunity ; 40(1): 128-39, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412617

RESUMO

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Assuntos
Carcinogênese/imunologia , Colite/imunologia , Colo/imunologia , Neoplasias do Colo/prevenção & controle , Células Epiteliais/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Butiratos/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colite/complicações , Colite/tratamento farmacológico , Colo/microbiologia , Colo/patologia , Neoplasias do Colo/etiologia , Células Dendríticas/imunologia , Suscetibilidade a Doenças , Células Epiteliais/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Niacina/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/imunologia , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
4.
J Immunol ; 207(5): 1428-1436, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348977

RESUMO

Dendritic cells (DCs) are professional APCs that play a crucial role in initiating robust immune responses against invading pathogens while inducing regulatory responses to the body's tissues and commensal microorganisms. A breakdown of DC-mediated immunological tolerance leads to chronic inflammation and autoimmune disorders. However, cell-intrinsic molecular regulators that are critical for programming DCs to a regulatory state rather than to an inflammatory state are not known. In this study, we show that the activation of the TCF4 transcription factor in DCs is critical for controlling the magnitude of inflammatory responses and limiting neuroinflammation. DC-specific deletion of TCF4 in mice increased Th1/Th17 responses and exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of TCF4 in DCs led to heightened activation of p38 MAPK and increased levels of proinflammatory cytokines IL-6, IL-23, IL-1ß, TNF-α, and IL-12p40. Consistent with these findings, pharmacological blocking of p38 MAPK activation delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology in TCF4ΔDC mice. Thus, manipulation of the TCF4 pathway in DCs could provide novel opportunities for regulating chronic inflammation and represents a potential therapeutic approach to control autoimmune neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Células Th1 , Animais , Células Dendríticas , Camundongos , Camundongos Endogâmicos C57BL , Células Th17 , Fator de Transcrição 4
5.
J Immunol ; 205(8): 2265-2275, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32917787

RESUMO

Loss of immune tolerance to gut microflora is inextricably linked to chronic intestinal inflammation and colitis-associated colorectal cancer (CAC). The LRP5/6 signaling cascade in APCs contributes to immune homeostasis in the gut, but whether this pathway in APCs protects against CAC is not known. In the current study, using a mouse model of CAC, we show that the LRP5/6-ß-catenin-IL-10 signaling axis in intestinal CD11c+ APCs protects mice from CAC by regulating the expression of tumor-promoting inflammatory factors in response to commensal flora. Genetic deletion of LRP5/6 in CD11c+ APCs in mice (LRP5/6ΔCD11c) resulted in enhanced susceptibility to CAC. This is due to a microbiota-dependent increased expression of proinflammatory factors and decreased expression of the immunosuppressive cytokine IL-10. This condition could be improved in LRP5/6ΔCD11c mice by depleting the gut flora, indicating the importance of LRP5/6 in mediating immune tolerance to the gut flora. Moreover, mechanistic studies show that LRP5/6 suppresses the expression of tumor-promoting inflammatory factors in CD11c+ APCs via the ß-catenin-IL-10 axis. Accordingly, conditional activation of ß-catenin specifically in CD11c+ APCs or in vivo administration of IL-10 protected LRP5/6ΔCD11c mice from CAC by suppressing the expression of inflammatory factors. In summary, in this study, we identify a key role for the LRP5/6-ß-catenin-IL-10 signaling pathway in intestinal APCs in resolving chronic intestinal inflammation and protecting against CAC in response to the commensal flora.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Colite/imunologia , Neoplasias do Colo/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-10/imunologia , Via de Sinalização Wnt/imunologia , beta Catenina/imunologia , Animais , Células Apresentadoras de Antígenos/patologia , Colite/complicações , Colite/genética , Colite/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/genética , Neoplasias do Colo/prevenção & controle , Microbioma Gastrointestinal/genética , Interleucina-10/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
6.
J Immunol ; 200(9): 3259-3268, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602775

RESUMO

Aberrant Wnt/ß-catenin signaling occurs in several inflammatory diseases, including inflammatory bowel disease and inflammatory bowel disease-associated colon carcinogenesis. However, its role in shaping mucosal immune responses to commensals in the gut remains unknown. In this study, we investigated the importance of canonical Wnt signaling in CD11c+ APCs in controlling intestinal inflammation. Using a mouse model of ulcerative colitis, we demonstrated that canonical Wnt signaling in intestinal CD11c+ APCs controls intestinal inflammation by imparting an anti-inflammatory phenotype. Genetic deletion of Wnt coreceptors, low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) in CD11c+ APCs in LRP5/6ΔCD11c mice, resulted in enhanced intestinal inflammation with increased histopathological severity of colonic tissue. This was due to microbiota-dependent increased production of proinflammatory cytokines and decreased expression of immune-regulatory factors such as IL-10, retinoic acid, and IDO. Mechanistically, loss of LRP5/6-mediated signaling in CD11c+ APCs resulted in altered microflora and T cell homeostasis. Furthermore, our study demonstrates that conditional activation of ß-catenin in CD11c+ APCs in LRP5/6ΔCD11c mice resulted in reduced intestinal inflammation with decreased histopathological severity of colonic tissue. These results reveal a mechanism by which intestinal APCs control intestinal inflammation and immune homeostasis via the canonical Wnt-signaling pathway.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , Via de Sinalização Wnt/imunologia , Animais , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/imunologia , Colo/microbiologia , Homeostase/imunologia , Inflamação/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
J Immunol ; 200(5): 1781-1789, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386257

RESUMO

At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis. Genetic deletion of GPR81 in mice led to increased Th1/Th17 cell differentiation and reduced regulatory T cell differentiation, resulting in enhanced susceptibility to colonic inflammation. This was due to increased production of proinflammatory cytokines (IL-6, IL-1ß, and TNF-α) and decreased expression of immune regulatory factors (IL-10, retinoic acid, and IDO) by intestinal APCs lacking GPR81. Consistent with these findings, pharmacological activation of GPR81 decreased inflammatory cytokine expression and ameliorated colonic inflammation. Taken together, these findings identify a new and important role for the GPR81 signaling pathway in regulating immune tolerance and colonic inflammation. Thus, manipulation of the GPR81 pathway could provide novel opportunities for enhancing regulatory responses and treating colonic inflammation.


Assuntos
Colite/metabolismo , Homeostase/fisiologia , Ácido Láctico/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/metabolismo
8.
Biochem J ; 469(1): 17-23, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26173258

RESUMO

SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo. In the present study, we interrogated the role of this transporter in breast cancer by deleting Slc6a14 in mice and monitoring the consequences of this deletion in models of spontaneous breast cancer (Polyoma middle T oncogene-transgenic mouse and mouse mammary tumour virus promoter-Neu-transgenic mouse). Slc6a14-knockout mice are viable, fertile and phenotypically normal. The plasma amino acids were similar in wild-type and knockout mice and there were no major compensatory changes in the expression of other amino acid transporter mRNAs. There was also no change in mammary gland development in the knockout mouse. However, when crossed with PyMT-Tg mice or MMTV/Neu (mouse mammary tumour virus promoter-Neu)-Tg mice, the development and progression of breast cancer were markedly decreased on Slc6a14(-/-) background. Analysis of transcriptomes in tumour tissues from wild-type mice and Slc6a14-null mice indicated no compensatory changes in the expression of any other amino acid transporter mRNA. However, the tumours from the null mice showed evidence of amino acid starvation, decreased mTOR signalling and decreased cell proliferation. These studies demonstrate that SLC6A14 is critical for the maintenance of amino acid nutrition and optimal mammalian target of rapamycin (mTOR) signalling in ER+ breast cancer and that the transporter is a potential target for development of a novel class of anti-cancer drugs targeting amino acid nutrition in tumour cells.


Assuntos
Sistemas de Transporte de Aminoácidos , Proliferação de Células , Deleção de Genes , Neoplasias Mamárias Experimentais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Transdução de Sinais , Animais , Sistemas de Liberação de Medicamentos , Feminino , Neoplasias Mamárias Experimentais/dietoterapia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
J Pharmacol Exp Ther ; 353(1): 17-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25617245

RESUMO

NaCT (SLC13A5) is a Na(+)-coupled transporter for Krebs cycle intermediates and is expressed predominantly in the liver. Human NaCT is relatively specific for citrate compared with other Krebs cycle intermediates. The transport activity of human NaCT is stimulated by Li(+), whereas that of rat NaCT is inhibited by Li(+). We studied the influence of Li(+) on NaCTs cloned from eight different species. Li(+) stimulated the activity of only NaCTs from primates (human, chimpanzee, and monkey); by contrast, NaCTs from nonprimate species (mouse, rat, dog, and zebrafish) were inhibited by Li(+). Caenorhabditis elegans NaCT was not affected by Li(+). With human NaCT, the Li(+)-induced increase in transport activity was associated with the conversion of the transporter from a low-affinity/high-capacity type to a high-affinity/low-capacity type. H(+) was able to substitute for Li(+) in eliciting the stimulatory effect. The amino acid Phe500 in human NaCT was critical for Li(+)/H(+)-induced stimulation. Mutation of this amino acid to tryptophan (F500W) markedly increased the basal transport activity of human NaCT in the absence of Li(+), but the ability of Li(+) to stimulate the transporter was almost completely lost with this mutant. Substitution of Phe500 with tryptophan in human NaCT converted the transporter from a low-affinity/high-capacity type to a high-affinity/low-capacity type, an effect similar to that of Li(+) on the wild-type NaCT. These studies show that Li(+)-induced activation of NaCT is specific for the transporter in primates and that the region surrounding Phe500 in primate NaCTs is important for the Li(+) effect.


Assuntos
Compostos de Lítio/farmacologia , Simportadores/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans , Linhagem Celular , Citratos/metabolismo , Cães , Feminino , Humanos , Macaca mulatta , Camundongos , Mutação , Oócitos/metabolismo , Pan troglodytes , Ratos , Especificidade da Espécie , Simportadores/genética , Xenopus laevis , Peixe-Zebra
10.
Biochem J ; 450(1): 169-78, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23167260

RESUMO

SLC5A8 (solute carrier gene family 5A, member 8) is a sodium-coupled transporter for monocarboxylates. Among its substrates are the HDAC (histone deacetylase) inhibitors butyrate, propionate and pyruvate. Expression of SLC5A8 is silenced in cancers via DNA methylation, and ectopic expression of SLC5A8 in cancer cells induces apoptosis in the presence of its substrates that are HDAC inhibitors. In the present study we show that ectopic expression of SLC5A8 in cancer cells translocates the anti-apoptotic protein survivin to the plasma membrane through protein-protein interaction resulting in depletion of nuclear survivin and also decreases cellular levels of survivin through inhibition of transcription. These SLC5A8-induced changes in the location and levels of survivin result in cell-cycle arrest, disruption of the chromosome passenger complex involved in mitosis, induction of apoptosis and enhancement in chemosensitivity. These effects are seen independently of the transport function of SLC5A8 and histone acetylation status of the cell; in the presence of pyruvate, a SLC5A8 substrate and also an HDAC inhibitor, these effects are amplified. Ectopic expression of SLC5A8 in the breast cancer cell line MB231 inhibits the ability of cells to form colonies in vitro and to form tumours in mouse xenografts in vivo. The suppression of survivin transcription occurs independently of HDAC inhibition, and the underlying mechanism is associated with decreased phosphorylation of STAT3 (signal transducer and activator of transcription 3). The observed effects are specific for survivin with no apparent changes in expression of other inhibitor-of-apoptosis proteins. The present study unravels a novel, hitherto unrecognized, mechanism for the tumour-suppressive role of a plasma membrane transporter independent of its transport function.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Survivina , Transplante Heterólogo
11.
BMC Musculoskelet Disord ; 15: 9, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401033

RESUMO

BACKGROUND: Nutrient levels are known to influence the development of osteoarthritis (OA), presumably by modulating levels of matrix biosynthesis and degradation. These processes may be affected by ascorbic acid (AA), an antioxidant which acts as a cofactor for numerous biochemical reactions and is essential for post-translational modifications of collagen. In this study we examined the expression of SVCT2, the only known Sodium coupled vitamin C transporter isoform present in articular cartilage, in human articular cartilage explants derived from both normal and osteoarthritis articular cartilage. METHODS: OA1 and OA3 human articular cartilage was carefully dissected and macroscopically graded for degeneration via the Collins scale. The tissue samples were histologically examined by Hematoxylin and Eosin and Safranin O and Fast Green staining. SVCT2 expression analysis was performed at mRNA level by quantitative real time PCR and at a protein level by immunohistochemistry. RESULTS: Our quantitative real time PCR showed marked variation in the expression of SVCT2 in human osteoarthritic articular cartilage. SVCT2 expression was significantly down-regulated (p = 0.0001) in the Collins grade 3 (OA3) compared to Collins grade 1 (OA1) tissue. Furthermore, slides stained with fluorescent antibodies to SVCT2 demonstrated greatly reduced fluorescence for the SVCT2 transporter on the chondrocyte plasma membrane in the osteoarthritic tissue samples. CONCLUSIONS: These findings demonstrate that the expression of SVCT2 transporter is significantly altered in human osteoarthritic tissues (OA3). The modulation of this transporter could therefore potentially influence the prevention, management and treatment of osteoarthritis.


Assuntos
Cartilagem Articular/química , Condrócitos/química , Osteoartrite do Joelho/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/análise , Idoso , Cartilagem Articular/patologia , Condrócitos/patologia , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Transportadores de Sódio Acoplados à Vitamina C/genética
12.
J Biol Chem ; 286(36): 31830-8, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21771784

RESUMO

SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues. Here, we show that the transporter is up-regulated specifically in estrogen receptor (ER)-positive breast cancer, demonstrable with primary human breast cancer tissues and human breast cancer cell lines. SLC6A14 is an estrogen/ER target. The transport features of SLC6A14 include concentrative transport of leucine (an activator of mTOR), glutamine (an essential amino acid for nucleotide biosynthesis and substrate for glutaminolysis), and arginine (an essential amino acid for tumor cells), suggesting that ER-positive breast cancer cells up-regulate SLC6A14 to meet their increased demand for these amino acids. Consequently, treatment of ER-positive breast cancer cells in vitro with α-methyl-DL-tryptophan (α-MT), a selective blocker of SLC6A14, induces amino acid deprivation, inhibits mTOR, and activates autophagy. Prolongation of the treatment with α-MT causes apoptosis. Addition of an autophagy inhibitor (3-methyladenine) during α-MT treatment also induces apoptosis. These effects of α-MT are specific to ER-positive breast cancer cells, which express the transporter. The ability of α-MT to cause amino acid deprivation is significantly attenuated in MCF-7 cells, an ER-positive breast cancer cell line, when SLC6A14 is silenced with shRNA. In mouse xenograft studies, α-MT by itself is able to reduce the growth of the ER-positive ZR-75-1 breast cancer cells. These studies identify SLC6A14 as a novel and effective drug target for the treatment of ER-positive breast cancer.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Receptores de Estrogênio , Transplante Heterólogo , Triptofano/análogos & derivados , Triptofano/farmacologia , Células Tumorais Cultivadas
13.
Glia ; 60(3): 333-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22072423

RESUMO

Fumaric acid esters are used to treat psoriasis, an inflammatory skin disease characterized by keratinocyte proliferation. Inflammation and proliferation are hallmarks of retinal disease; hence, fumaric acid esters may have therapeutic value in retinal pathology. In diseased retinas, Müller glial cells (MCs) undergo reactive gliosis, a hyperproliferative state. MCs take up folate, a vitamin necessary for cell proliferation, via the proton-coupled folate transporter (PCFT). Here we examined the effect of monomethylfumarate (MMF), the active metabolite of fumaric acid esters, on expression and function of PCFT in MCs. Primary MCs, isolated from neonatal mouse retinas, were treated with MMF, and PCFT function was monitored by measuring uptake of radiolabeled methyltetrahydrofolate (MTF) at pH 5.5. Dose-response and time-course analyses were performed to identify optimal conditions for maximal effect. The influence of MMF treatment on kinetic parameters of PCFT was studied, and PCFT expression was analyzed at the mRNA and protein level. MTF uptake in MCs decreased by ˜50% following 18 h treatment with 1 mM MMF. This effect was specific to fumaric acid esters. MMF treatment decreased the maximal velocity of the transporter without altering substrate affinity. The decrease in PCFT function following MMF treatment was accompanied by attenuated PCFT expression. This is the first report that an antipsoriatic compound can regulate folate transport in MCs and may have potential for the treatment of reactive gliosis in retinal disease.


Assuntos
Fármacos Dermatológicos/farmacologia , Fumaratos/farmacologia , Maleatos/farmacologia , Neuroglia/efeitos dos fármacos , Retina/citologia , Análise de Variância , Animais , Animais Recém-Nascidos , Antipsicóticos , Relação Dose-Resposta a Droga , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Niacina/farmacologia , Transportador de Folato Acoplado a Próton/genética , Transportador de Folato Acoplado a Próton/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Fatores de Tempo , Trítio/metabolismo , Vasodilatadores/farmacologia
14.
EMBO Rep ; 11(6): 431-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20448665

RESUMO

The prostate is a highly specialized mammalian organ that produces and releases large amounts of citrate. However, the citrate release mechanism is not known. Here, we present the results of molecular cloning of a citrate transporter from human normal prostate epithelial PNT2-C2 cells shown previously to express such a mechanism. By using rapid amplification of cDNA ends PCR, we determined that the prostatic carrier is an isoform of the mitochondrial transporter SLC25A1 with a different first exon. We confirmed the functionality of the clone by expressing it in human embryonic kidney cells and performing radiotracer experiments and whole-cell patch-clamp recordings. By using short interfering RNAs targeting different parts of the sequence, we confirmed that the cloned protein is the main prostatic transporter responsible for citrate release. We also produced a specific antibody and localized the cloned transporter protein to the plasma membrane of the cells. By using the same antibody, we have shown that the cloned transporter is expressed in non-malignant human tissues.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Evolução Molecular , Próstata/citologia , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Linhagem Celular , Ácido Cítrico/metabolismo , Células Epiteliais/citologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Íons/metabolismo , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
15.
J Biol Chem ; 285(36): 27601-8, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20601425

RESUMO

Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.


Assuntos
Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Fermentação , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Animais , Células da Medula Óssea/citologia , Butiratos/metabolismo , Butiratos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos , Propionatos/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Transativadores/metabolismo , Fator de Transcrição RelB/metabolismo
16.
Biochim Biophys Acta ; 1798(6): 1164-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20211600

RESUMO

Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na(+)-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound. Here we show that it is not the amino acid transport systems but instead the Na(+)-coupled monocarboxylate transporter SLC5A8 that plays a predominant role in this reabsorptive process. Expression of cloned human and mouse SLC5A8 in mammalian cells induces Na(+)-dependent transport of pyroglutamate that is inhibitable by various SLC5A8 substrates. SLC5A8-mediated transport of pyroglutamate is saturable with a Michaelis constant of 0.36+/-0.04mM. Na(+)-activation of the transport process exhibits sigmoidal kinetics with a Hill coefficient of 1.8+/-0.4, indicating involvement of more than one Na(+) in the activation process. Expression of SLC5A8 in Xenopuslaevis oocytes induces Na(+)-dependent inward currents in the presence of pyroglutamate under voltage-clamp conditions. The concentration of pyroglutamate necessary for induction of half-maximal current is 0.19+/-0.01mM. The Na(+)-activation kinetics is sigmoidal with a Hill coefficient of 2.3+/-0.2. Ibuprofen, a blocker of SLC5A8, suppressed pyroglutamate-induced currents in SLC5A8-expressing oocytes; the concentration of the blocker necessary for causing half-maximal inhibition is 14+/-1microM. The involvement of SLC5A8 can be demonstrated in rabbit renal brush border membrane vesicles by showing that the Na(+)-dependent uptake of pyroglutamate in these vesicles is inhibitable by known substrates of SLC5A8. The Na(+) gradient-driven pyroglutamate uptake was stimulated by an inside-negative K(+) diffusion potential induced by valinomycin, showing that the uptake process is electrogenic.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Membrana Celular/genética , Expressão Gênica , Humanos , Ionóforos/farmacologia , Rim/metabolismo , Cinética , Camundongos , Microvilosidades/genética , Microvilosidades/metabolismo , Transportadores de Ácidos Monocarboxílicos , Oócitos , Técnicas de Patch-Clamp , Potássio/metabolismo , Coelhos , Ratos , Valinomicina/farmacologia , Xenopus laevis
17.
Methods Mol Biol ; 2224: 133-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606212

RESUMO

Crohn's disease (CD) and ulcerative colitis are two main clinically defined forms of chronic inflammatory bowel disease (IBD). Chronic intestinal inflammation is inextricably linked to colitis-associated colon carcinogenesis (CAC). Patients with ulcerative colitis (UC) and Crohn's disease (CD) have an increased risk of colon cancer. Our understanding of IBD and IBD-associated colon carcinogenesis depends largely on rodent models. AOM-DSS-induced colitis-associated colon cancer in mice is the most widely used and accepted model that can recapitulate the human IBD-associated colon cancer. Here, we have provided detailed protocols of this mouse model of experimentally induced chronic intestinal inflammation-associated colon cancer. We will also discuss the protocols for the isolation and analysis of inflammatory immune cells from the colon.


Assuntos
Colite Ulcerativa/patologia , Neoplasias Associadas a Colite/patologia , Neoplasias do Colo/patologia , Animais , Colite Ulcerativa/induzido quimicamente , Colo/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/patologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Front Immunol ; 12: 691134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394085

RESUMO

For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells' effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.


Assuntos
Células Dendríticas/imunologia , Ácido Láctico/imunologia , Macrófagos/imunologia , Animais , Autoimunidade , Proteínas de Ciclo Celular/imunologia , Humanos , Imunomodulação , Infecções/imunologia , Doenças Inflamatórias Intestinais/imunologia , Transportadores de Ácidos Monocarboxílicos/imunologia , Neoplasias/imunologia , Receptores Acoplados a Proteínas G/imunologia
19.
Mol Cancer Res ; 19(9): 1486-1497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34099522

RESUMO

DNA damage, induced by either chemical carcinogens or environmental pollutants, plays an important role in the initiation of colorectal cancer. DNA repair processes, however, are involved in both protecting against cancer formation, and also contributing to cancer development, by ensuring genomic integrity and promoting the efficient DNA repair in tumor cells, respectively. Although DNA repair pathways have been well exploited in the treatment of breast and ovarian cancers, the role of DNA repair processes and their therapeutic efficacy in colorectal cancer is yet to be appreciably explored. To understand the role of DNA repair, especially homologous recombination (HR), in chemical carcinogen-induced colorectal cancer growth, we unraveled the role of RAD51AP1 (RAD51-associated protein 1), a protein involved in HR, in genotoxic carcinogen (azoxymethane, AOM)-induced colorectal cancer. Although AOM treatment alone significantly increased RAD51AP1 expression, the combination of AOM and dextran sulfate sodium (DSS) treatment dramatically increased by several folds. RAD51AP1 expression is found in mouse colonic crypt and proliferating cells. RAD51AP1 expression is significantly increased in majority of human colorectal cancer tissues, including BRAF/KRAS mutant colorectal cancer, and associated with reduced treatment response and poor prognosis. Rad51ap1-deficient mice were protected against AOM/DSS-induced colorectal cancer. These observations were recapitulated in a genetically engineered mouse model of colorectal cancer (ApcMin /+ ). Furthermore, chemotherapy-resistant colorectal cancer is associated with increased RAD51AP1 expression. This phenomenon is associated with reduced cell proliferation and colorectal cancer stem cell (CRCSC) self-renewal. Overall, our studies provide evidence that RAD51AP1 could be a novel diagnostic marker for colorectal cancer and a potential therapeutic target for colorectal cancer prevention and treatment. IMPLICATIONS: This study provides first in vivo evidence that RAD51AP1 plays a critical role in colorectal cancer growth and drug resistance by regulating CRCSC self-renewal.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
20.
Pharmacol Ther ; 121(1): 29-40, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18992769

RESUMO

Tumor cells have an increased demand for nutrients; this demand is met by increased availability of nutrients through vasculogenesis and by enhanced cellular entry of nutrients through upregulation of specific transporters. This review focuses on three groups of nutrient transporters relevant to cancer: glucose transporters, lactate transporters, and amino acid transporters. Tumor cells enhance glucose uptake via induction of GLUT1 and SGLT1, and coordinate the increased entry of glucose with increased glycolysis. Since enhanced glycolysis in cancer is associated with lactate production, tumor cells must find a way to eliminate lactic acid to prevent cellular acidification. This is achieved by the upregulation of MCT4, a H+-coupled lactate transporter. In addition, the Na+-coupled lactate transporter SMCT1 is silenced in cancer. SMCT1 also transports butyrate and pyruvate, which are inhibitors of histone deacetylases. The silencing of SMCT1 occurs in cancers of a variety of tissues. Re-expression of SMCT1 in cancer cell lines leads to growth arrest and apoptosis in the presence of butyrate or pyruvate, suggesting that the transporter may function as a tumor suppressor. Tumor cells meet their amino acid demands by inducing xCT/4F2hc, LAT1/4F2hc, ASCT2, and ATB0,+. xCT/4F2hc is related primarily to glutathione status, protection against oxidative stress, and cell cycle progression, whereas the other three transporters are related to amino acid nutrition. Pharmacologic blockade of LAT1/4F2hc, xCT/4F2hc, or ATB0,+ leads to inhibition of cancer cell growth. Since tumor cells selectively regulate these nutrient transporters to support their rapid growth, these transporters have potential as drug targets for cancer therapy.


Assuntos
Sistemas de Transporte de Aminoácidos/fisiologia , Metabolismo Energético , Proteínas Facilitadoras de Transporte de Glucose/fisiologia , Glucose/metabolismo , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos/fisiologia , Neoplasias/fisiopatologia , Sistemas de Transporte de Aminoácidos/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Ácido Láctico/biossíntese , Transportadores de Ácidos Monocarboxílicos/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA