Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L133-L148, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631359

RESUMO

Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Gânglios Parassimpáticos/metabolismo , Transcriptoma , Nervo Vago/metabolismo , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/terapia , Gânglios Parassimpáticos/patologia , Masculino , Camundongos , Camundongos Knockout , Nervo Vago/patologia
2.
Proc Natl Acad Sci U S A ; 111(24): 8961-6, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889629

RESUMO

Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Tonsila do Cerebelo/fisiologia , Plasticidade Neuronal , Neurotransmissores/metabolismo , Prótons , Sinapses/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/química , Acidose , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Eletrodos , Potenciais Pós-Sinápticos Excitadores , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Aprendizagem , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Peptídeos/química , Venenos de Aranha/química
3.
bioRxiv ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39229081

RESUMO

Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease.

4.
Stud Health Technol Inform ; 297: 85-92, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073382

RESUMO

In this paper, we identify and describe early signs of a shift towards 3rd generation UD, of which "nonclusive design" is an essential part. The paper explores the significance of such a shift using examples of the built and designed environment and of signage. Nonclusive design means design that resists categorisations of bodies/roles and that does not come with predefined or presupposed limits in terms of who it is meant for. We outline seven themes characterising the shift towards nonclusive design: 1) from included to undefined users, 2) from person to function, 3) from adaptism to variation, 4) from separation to convergence, 5) from reactive to proactive, 6) from unaware to aware, and 7) from explicit to tacit. Nonclusive design directs attention to context instead of the individual, focusing on possibilities, functions and facilities. It has a convergent character, highlighting variation and unity rather than separation. Nonclusive design presupposes awareness, knowledge and proactive development void of adaptism. It incorporates human variation without reiterating patterns of norm-deviation. We argue that the continued growth of UD demands, is part of, and contributes to a shift in culture, with nonclusive, intersectional thinking as a key future driver. In such a culture, 3rd generation UD can contribute as a common guiding mindset, as a source for innovation, as a way to listen for diversity in all its forms, and as a way to lead towards a sustainable society.


Assuntos
Conhecimento , Desenho Universal , Humanos
5.
Circ Res ; 105(3): 279-86, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19590043

RESUMO

RATIONALE: Acid-sensing ion channels (ASICs) are Na+ channels that are activated by acidic pH. Their expression in cardiac afferents and remarkable sensitivity to small pH changes has made them leading candidates to sense cardiac ischemia. OBJECTIVE: Four genes encode six different ASIC subunits, however it is not yet clear which of the ASIC subunits contribute to the composition of ASICs in cardiac afferents. METHODS AND RESULTS: Here, we labeled cardiac afferents using a retrograde tracer dye in mice, which allowed for patch-clamp studies of murine cardiac afferents. We found that a higher percentage of cardiac sensory neurons from the dorsal root ganglia respond to acidic pH and generated larger currents compared to those from the nodose ganglia. The ASIC-like current properties of the cardiac dorsal root ganglia neurons from wild-type mice most closely matched the properties of ASIC2a/3 heteromeric channels. This was supported by studies in ASIC-null mice: acid-evoked currents from ASIC3(-/-) cardiac afferents matched the properties of ASIC2a channels, and currents from ASIC2(-/-) cardiac afferents matched the properties of ASIC3 channels. CONCLUSIONS: We conclude that ASIC2a and -3 are the major ASIC subunits in cardiac dorsal root ganglia neurons and provide potential molecular targets to attenuate chest pain and deleterious reflexes associated with cardiac disease.


Assuntos
Gânglios Espinais/metabolismo , Coração/inervação , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica/fisiologia , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Trifosfato de Adenosina/farmacologia , Animais , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Prótons , Canais de Sódio/genética
6.
Proc Natl Acad Sci U S A ; 105(8): 3140-4, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287010

RESUMO

Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H(+)-evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K(+) channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K(+) channel function by coexpressing ASIC1a and the high-conductance Ca(2+)- and voltage-activated K(+) (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K(+) channels suggest broad opportunities for this signaling system to alter neuronal function.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Linhagem Celular , DNA Complementar/genética , Eletrofisiologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína , Venenos de Escorpião/genética
7.
Trustee ; 64(9): 6-7, 1, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22132666
8.
J Neurosci ; 29(17): 5381-8, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403806

RESUMO

No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments. Here, we used several of these models to test the hypothesis that the acid-sensing ion channel-1a (ASIC1a) might be targeted to reduce depression. Genetically disrupting ASIC1a in mice produced antidepressant-like effects in the forced swim test, the tail suspension test, and following unpredictable mild stress. Pharmacologically inhibiting ASIC1a also had antidepressant-like effects in the forced swim test. The effects of ASIC1a disruption in the forced swim test were independent of and additive to those of several commonly used antidepressants. Furthermore, ASIC1a disruption interfered with an important biochemical marker of depression, the ability of stress to reduce BDNF in the hippocampus. Restoring ASIC1a to the amygdala of ASIC1a(-/-) mice with a viral vector reversed the forced swim test effects, suggesting that the amygdala is a key site of ASIC1a action in depression-related behavior. These data are consistent with clinical studies emphasizing the importance of the amygdala in mood regulation, and suggest that ASIC1a antagonists may effectively combat depression.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Transtorno Depressivo/psicologia , Feminino , Isoquinolinas/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Naftalenos/administração & dosagem , Proteínas do Tecido Nervoso/deficiência , Canais de Sódio/deficiência , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
9.
Elife ; 92020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026343

RESUMO

Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.


Assuntos
Ectodisplasinas/genética , Glândulas Exócrinas/imunologia , Mucosa Respiratória/imunologia , Staphylococcus aureus/fisiologia , Sus scrofa/imunologia , Animais , Ectodisplasinas/imunologia , Feminino , Técnicas de Inativação de Genes , Masculino , Sus scrofa/genética
10.
Neuron ; 39(1): 133-46, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12848938

RESUMO

The ability to detect salt is critical for the survival of terrestrial animals. Based on amiloride-dependent inhibition, the receptors that detect salt have been postulated to be DEG/ENaC channels. We found the Drosophila DEG/ENaC genes Pickpocket11 (ppk11) and Pickpocket19 (ppk19) expressed in the larval taste-sensing terminal organ and in adults on the taste bristles of the labelum, the legs, and the wing margins. When we disrupted PPK11 or PPK19 function, larvae lost their ability to discriminate low concentrations of Na(+) or K(+) from water, and the electrophysiologic responses to low salt concentrations were attenuated. In both larvae and adults, disrupting PPK11 or PPK19 affected the behavioral response to high salt concentrations. In contrast, the response of larvae to sucrose, pH 3, and several odors remained intact. These results indicate that the DEG/ENaC channels PPK11 and PPK19 play a key role in detecting Na(+) and K(+) salts.


Assuntos
Drosophila/genética , Neurônios Aferentes/fisiologia , Sais , Canais de Sódio/genética , Paladar/genética , Amilorida/farmacologia , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Eletrofisiologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Larva/fisiologia , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase
11.
Neuron ; 34(3): 463-77, 2002 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-11988176

RESUMO

Many central neurons possess large acid-activated currents, yet their molecular identity is unknown. We found that eliminating the acid sensing ion channel (ASIC) abolished H(+)-gated currents in hippocampal neurons. Neuronal H(+)-gated currents and transient acidification are proposed to play a role in synaptic transmission. Investigating this possibility, we found ASIC in hippocampus, in synaptosomes, and in dendrites localized at synapses. Moreover, loss of ASIC impaired hippocampal long-term potentiation. ASIC null mice had reduced excitatory postsynaptic potentials and NMDA receptor activation during high-frequency stimulation. Consistent with these findings, null mice displayed defective spatial learning and eyeblink conditioning. These results identify ASIC as a key component of acid-activated currents and implicate these currents in processes underlying synaptic plasticity, learning, and memory.


Assuntos
Aprendizagem/fisiologia , Proteínas de Membrana , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Condicionamento Palpebral , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Hipocampo/citologia , Hipocampo/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Canais de Sódio/genética , Transmissão Sináptica/fisiologia
12.
Trends Neurosci ; 29(10): 578-86, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16891000

RESUMO

Extracellular acid can have important effects on neuron function. In central and peripheral neurons, acid-sensing ion channels (ASICs) have emerged as key receptors for extracellular protons, and recent studies suggest diverse roles for these channels in the pathophysiology of pain, ischemic stroke and psychiatric disease. ASICs have also been implicated in mechanosensation in the peripheral nervous system and in neurotransmission in the central nervous system. Here, we briefly review advances in our understanding of ASICs, their potential contributions to disease, and the possibility for their therapeutic modification.


Assuntos
Sistema Nervoso Central/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Sistema Nervoso Periférico/fisiologia , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Animais , Líquido Extracelular/química , Humanos , Proteínas de Membrana/química , Transtornos Mentais/fisiopatologia , Proteínas do Tecido Nervoso/química , Dor/fisiopatologia , Canais de Sódio/química , Acidente Vascular Cerebral/fisiopatologia
13.
Biol Psychiatry ; 62(10): 1140-8, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17662962

RESUMO

BACKGROUND: The molecular mechanisms underlying innate fear are poorly understood. Previous studies indicated that the acid sensing ion channel ASIC1a influences fear behavior in conditioning paradigms. However, these differences may have resulted from an ASIC1a effect on learning, memory, or the expression of fear. METHODS: To test the hypothesis that ASIC1a influences the expression of fear or anxiety independent of classical conditioning, we examined the effects of disrupting the mouse ASIC1a gene on unconditioned fear in the open field test, unconditioned acoustic startle, and fear evoked by the predator odor trimethylthiazoline (TMT). In addition, we tested the effects of acutely inhibiting ASIC1a with PcTx, an ASIC1a antagonist in tarantula venom. Our immunohistochemistry suggested ASIC1a is expressed in the bed nucleus of the stria terminalis, medial amygdala, and periaqueductal gray, which are thought to play important roles in the generation and expression of innate fear. Therefore, we also tested whether ASIC1a disruption altered c-fos expression in these structures following TMT exposure. RESULTS: We found that the loss of ASIC1a reduced fear in the open field test, reduced acoustic startle, and inhibited the fear response to TMT. Similarly, intracerebroventricular administration of PcTx reduced TMT-evoked freezing in ASIC1a(+/+) mice but not ASIC1a(-/-) mice. In addition, loss of ASIC1a altered TMT-evoked c-fos expression in the medial amydala and dorsal periaqueductal gray. CONCLUSIONS: These findings suggest that ASIC1a modulates activity in the circuits underlying innate fear. Furthermore, the data indicate that targeting the ASIC1a gene or acutely inhibiting ASIC1a suppresses fear and anxiety independent of conditioning.


Assuntos
Comportamento Animal/fisiologia , Medo/fisiologia , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Vias Neurais/fisiologia , Neurônios/fisiologia , Canais de Sódio/deficiência , Canais Iônicos Sensíveis a Ácido , Estimulação Acústica/efeitos adversos , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/fisiologia , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Comportamento Exploratório/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Odorantes , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reflexo de Sobressalto/genética , Reflexo de Sobressalto/fisiologia , Tiazóis/farmacologia
14.
Clin Gastroenterol Hepatol ; 5(8): 964-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17618838

RESUMO

BACKGROUND & AIMS: Previous studies have shown that failure to produce serum antibodies to C. difficile (CD) toxin A is associated with more severe and recurrent C. difficile-associated diarrhea (CDAD); and that presence of AA genotype in the interleukin (IL)-8 gene promoter -251 position is associated with increased susceptibility to CDAD. This study examined the relationship between serum immunoglobulin G antibodies to CD toxin A and the presence of IL-8 AA genotype in hospitalized patients with CDAD. METHODS: At enrollment, blood for host IL-8 genotype, serum for CD anti-toxin A antibody, and stool for IL-8 by enzyme-linked immunosorbent assay were obtained in CDAD patients and in CD-toxin-negative asymptomatic controls. RESULTS: Nine of 24 (37.5%) CDAD and 3 of 20 (15%) controls were CD anti-toxin A positive (P = .095). Eleven of 24 (45.8%) CDAD subjects were positive for AA genotype compared with 5 of 20 (25.0%) controls (P = .0019). One of 11 (9.1%) CDAD with AA genotype were positive for anti-toxin A antibodies compared with 8 of 13 (61.5%) non-AA genotype CDAD (P < .0001). Fecal IL-8 concentration for the single antibody-positive CDAD subject with AA genotype was lower than the median level of 822 microg/mL seen in 10 anti-toxin A antibody-negative subjects with CDAD. CONCLUSIONS: This study provided evidence that host susceptibility to C. difficile diarrhea is related both to a defective humoral immune response to CD toxin A and host IL-8 AA genotype.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Toxinas Bacterianas/imunologia , DNA/genética , Diarreia/genética , Enterotoxinas/imunologia , Imunoglobulina G/imunologia , Interleucina-8/genética , Polimorfismo Genético , Idoso , Clostridioides difficile/isolamento & purificação , Diarreia/etiologia , Diarreia/imunologia , Enterocolite Pseudomembranosa/complicações , Enterocolite Pseudomembranosa/genética , Enterocolite Pseudomembranosa/imunologia , Ensaio de Imunoadsorção Enzimática , Seguimentos , Glucosiltransferases , Humanos , Interleucina-8/metabolismo , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Reação em Cadeia da Polimerase , Prognóstico , Estudos Retrospectivos
15.
Elife ; 62017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650315

RESUMO

Attenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown. We hypothesized that augmenting synaptic signaling during retrieval would increase memory lability. To enhance synaptic transmission, mice inhaled CO2 to induce an acidosis and activate acid sensing ion channels. Transient acidification increased the retrieval-induced lability of an aversive memory. The labile memory could then be weakened by an extinction protocol or strengthened by reconditioning. Coupling CO2 inhalation to retrieval increased activation of amygdala neurons bearing the memory trace and increased the synaptic exchange from Ca2+-impermeable to Ca2+-permeable AMPA receptors. The results suggest that transient acidosis during retrieval renders the memory of an aversive event more labile and suggest a strategy to modify debilitating memories.


Assuntos
Acidose , Medo , Memória , Tonsila do Cerebelo/fisiologia , Animais , Dióxido de Carbono/metabolismo , Condicionamento Clássico , Camundongos , Receptores de AMPA/metabolismo
16.
PLoS One ; 11(11): e0166089, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820848

RESUMO

Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Hipersensibilidade Respiratória/metabolismo , Sistema Respiratório/metabolismo , Animais , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Células Receptoras Sensoriais/metabolismo , Substância P/metabolismo , Nervo Vago/metabolismo
17.
J Neurosci ; 24(45): 10167-75, 2004 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-15537887

RESUMO

Ion channels in the degenerin-epithelial sodium channel (DEG-ENaC) family perform diverse functions, including mechanosensation. Here we explored the role of the vertebrate DEG-ENaC protein, acid-sensing ion channel 2 (ASIC2), in auditory transduction. Contributions of ASIC2 to hearing were examined by comparing hearing threshold and noise sensitivity of wild-type and ASIC2 null mice. ASIC2 null mice showed no significant hearing loss, indicating that the ASIC2 was not directly involved in the mechanotransduction of the mammalian cochlea. However, we found that (1) ASIC2 was present in the spiral ganglion (SG) neurons in the adult cochlea and that externally applied protons induced amiloride-sensitive sodium currents and action potentials in SG neurons in vitro, (2) proton-induced responses were greatly reduced in SG neurons obtained from ASIC2 null mice, indicating that activations of ASIC2 contributed a major portion of the proton-induced excitatory response in SG neurons, and (3) ASIC2 null mice were considerably more resistant to noise-induced temporary, but not permanent, threshold shifts. Together, these data suggest that ASIC2 contributes to suprathreshold functions of the cochlea. The presence of ASIC2 in SG neurons could provide sensors to directly convert local acidosis to excitatory responses, therefore offering a cellular mechanism linking hearing losses caused by many enigmatic causes (e.g., ischemia or inflammation of the inner ear) to excitotoxicity.


Assuntos
Cóclea/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Concentração de Íons de Hidrogênio , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios Aferentes/fisiologia , Ruído/efeitos adversos , Canais de Sódio/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Canais Iônicos Sensíveis a Ácido , Potenciais de Ação/efeitos dos fármacos , Amilorida/farmacologia , Animais , Limiar Auditivo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/fisiologia , Colina/farmacologia , Venenos Elapídicos/farmacologia , Líquido Extracelular/química , Perda Auditiva Neurossensorial/etiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Prótons , Canais de Sódio/deficiência , Canais de Sódio/genética , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos
18.
J Neurosci ; 24(40): 8678-89, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15470133

RESUMO

Acid-sensing ion channels (ASICs), a novel class of ligand-gated cation channels activated by protons, are highly expressed in peripheral sensory and central neurons. Activation of ASICs may play an important role in physiological processes such as nociception, mechanosensation, and learning-memory, and in the pathology of neurological conditions such as brain ischemia. Modulation of the activities of ASICs is expected to have a significant influence on the roles that these channels can play in both physiological and/or pathological processes. Here we show that the divalent cation Zn2+, an endogenous trace element, dose-dependently inhibits ASIC currents in cultured mouse cortical neurons at nanomolar concentrations. With ASICs expressed in Chinese hamster ovary cells, Zn2+ inhibits currents mediated by homomeric ASIC1a and heteromeric ASIC1a-ASIC2a channels, without affecting currents mediated by homomeric ASIC1beta, ASIC2a, or ASIC3. Consistent with ASIC1a-specific modulation, high-affinity Zn2+ inhibition is absent in neurons from ASIC1a knock-out mice. Current-clamp recordings and Ca2+-imaging experiments demonstrated that Zn2+ inhibits acid-induced membrane depolarization and the increase of intracellular Ca2+. Mutation of lysine-133 in the extracellular domain of the ASIC1a subunit abolishes the high-affinity Zn2+ inhibition. Our studies suggest that Zn2+ may play an important role in a negative feedback system for preventing overexcitation of neurons during normal synaptic transmission and ASIC1a-mediated excitotoxicity in pathological conditions.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/fisiologia , Zinco/farmacologia , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Quelantes/farmacologia , Cricetinae , Cricetulus , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Lisina/genética , Potenciais da Membrana , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Sódio/química , Canais de Sódio/genética
19.
Pain ; 106(3): 229-239, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14659506

RESUMO

Clinically, chronic pain and hyperalgesia induced by muscle injury are disabling and difficult to treat. Cellular and molecular mechanisms underlying chronic muscle-induced hyperalgesia are not well understood. For this reason, we developed an animal model where repeated injections of acidic saline into one gastrocnemius muscle produce bilateral, long-lasting mechanical hypersensitivity of the paw (i.e. hyperalgesia) without associated tissue damage. Since acid sensing ion channels (ASICs) are found on primary afferent fibers and respond to decreases in pH, we tested the hypothesis that ASICs on primary afferent fibers innervating muscle are critical to development of hyperalgesia and central sensitization in response to repeated intramuscular acid. Dorsal root ganglion neurons innervating muscle express ASIC3 and respond to acidic pH with fast, transient inward and sustained currents that resemble those of ASICs. Mechanical hyperalgesia produced by repeated intramuscular acid injections is prevented by prior treatment of the muscle with the non-selective ASIC antagonist, amiloride, suggesting ASICs might be involved. ASIC3 knockouts do not develop mechanical hyperalgesia to repeated intramuscular acid injection when compared to wildtype littermates. In contrast, ASIC1 knockouts develop hyperalgesia similar to their wildtype littermates. Extracellular recordings of spinal wide dynamic range (WDR) neurons from wildtype mice show an expansion of the receptive field to include the contralateral paw, an increased response to von Frey filaments applied to the paw both ipsilaterally and contralaterally, and increased response to noxious pinch contralaterally after the second intramuscular acid injection. These changes in WDR neurons do not occur in ASIC3 knockouts. Thus, activation of ASIC3s on muscle afferents is required for development of mechanical hyperalgesia and central sensitization that normally occurs in response to repeated intramuscular acid. Therefore, interfering with ASIC3 might be of benefit in treatment or prevention of chronic hyperalgesia.


Assuntos
Hiperalgesia/metabolismo , Proteínas de Membrana/deficiência , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/deficiência , Canais de Sódio/deficiência , Cloreto de Sódio/toxicidade , Canais Iônicos Sensíveis a Ácido , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Doença Crônica , Concentração de Íons de Hidrogênio , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Injeções Intramusculares , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Medição da Dor/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Canais de Sódio/genética , Cloreto de Sódio/administração & dosagem
20.
Hear Res ; 190(1-2): 149-60, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15051137

RESUMO

Within the cochlea, the hair cells detect sound waves and transduce them into receptor potential. The molecular architecture of the highly specialised cochlea is complex and until recently little was known about the molecular interactions which underlie its function. It is now clear that the coordinated expression and interplay of hundreds of genes and the integrity of cochlear cells regulate this function. It was hypothesised that transcripts expressed highly or specifically in the cochlea are likely to have important roles in normal hearing. Microarray analyses of the Soares NMIE library, consisting of 1536 cDNA clones isolated from the mouse inner ear, suggested that the expression of the mechanoreceptor DRASIC was enriched in the cochlea compared to other tissues. This amiloride-sensitive ion channel is a member of the DEG/ENaC superfamily and a potential candidate for the unidentified mechanoelectrical transduction channel of the sensory hair cells of the cochlea. The cochlear-enriched expression of amiloride-sensitive cation channel 3 (ACCN3) was confirmed by quantitative real-time polymerase chain reaction. Using in situ hybridisation and immunofluorescence, DRASIC expression was localised to the cells and neural fibre region of the spiral ganglion. DRASIC protein was also detected in cells of the organ of Corti. DRASIC may be present in cochlear hair cells as the ACCN3 transcript was shown to be expressed in immortalised cell lines that exhibit characteristics of hair cells. The normal mouse ACCN3 cDNA and an alternatively spliced transcript were elucidated by reverse transcription polymerase chain reaction from mouse inner ear RNA. This transcript may represent a new protein isoform with an as yet unknown function. A DRASIC knockout mouse model was tested for a hearing loss phenotype and was found to have normal hearing at 2 months of age but appeared to develop hearing loss early in life. The human homologue of ACCN3, acid-sensing ion channel 3, maps to the same chromosomal region as the autosomal recessive hearing loss locus DFNB13. However, we did not detect mutations in this gene in a family with DFNB13 hearing loss.


Assuntos
Orelha Interna/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/química , Imunofluorescência , Regulação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Hibridização In Situ , Ativação do Canal Iônico/fisiologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Canais de Sódio/química , Canais de Sódio/genética , Gânglio Espiral da Cóclea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA