Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Anal Bioanal Chem ; 416(6): 1311-1320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216759

RESUMO

FTIR spectral identification is today's gold standard analytical procedure for plastic pollution material characterization. High-throughput FTIR techniques have been advanced for small microplastics (10-500 µm) but less so for large microplastics (500-5 mm) and macroplastics (> 5 mm). These larger plastics are typically analyzed using ATR, which is highly manual and can sometimes destroy particles of interest. Furthermore, spectral libraries are often inadequate due to the limited variety of reference materials and spectral collection modes, resulting from expensive spectral data collection. We advance a new high-throughput technique to remedy these problems using FTIR microplate readers for measuring large particles (> 500 µm). We created a new reference database of over 6000 spectra for transmission, ATR, and reflection spectral collection modes with over 600 plastic, organic, and mineral reference materials relevant to plastic pollution research. We also streamline future analysis in microplate readers by creating a new particle holder for transmission measurements using off-the-shelf parts and fabricating a nonplastic 96-well microplate for storing particles. We determined that particles should be presented to microplate readers as thin as possible due to thick particles causing poor-quality spectra and identifications. We validated the new database using Open Specy and demonstrated that additional transmission and reflection spectra reference data were needed in spectral libraries.

2.
Environ Sci Technol ; 57(15): 6033-6039, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37070279

RESUMO

Plastic pollution is an international environmental problem. Desire to act is shared from the public to policymakers, yet motivation and approaches are diverging. Public attention is directed to reducing plastic consumption, cleaning local environments, and engaging in citizen science initiatives. Policymakers and regulators are working on prevention and mitigation measures, while international, regional, and national bodies are defining monitoring recommendations. Research activities are focused on validating approaches to address goals and comparing methods. Policy and regulation are eager to act on plastic pollution, often asking questions researchers cannot answer with available methods. The purpose of monitoring will define which method is implemented. A clear and open dialogue between all actors is essential to facilitate communication on what is feasible with current methods, further research, and development needs. For example, some methods can already be used for international monitoring, yet limitations including target plastic types and sizes, sampling strategy, available infrastructure and analytical capacity, and harmonization of generated data remain. Time and resources to advance scientific understanding must be balanced against the need to answer pressing policy issues.


Assuntos
Monitoramento Ambiental , Plásticos , Monitoramento Ambiental/métodos , Poluição Ambiental
3.
Anal Bioanal Chem ; 415(15): 2975-2987, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36939884

RESUMO

One of the biggest issues in microplastic (MP, plastic items <5 mm) research is the lack of standardisation and harmonisation in all fields, reaching from sampling methodology to sample purification, analytical methods and data analysis. This hampers comparability as well as reproducibility among studies. Concerning chemical analysis of MPs, Fourier-transform infrared (FTIR) spectroscocopy is one of the most powerful tools. Here, focal plane array (FPA) based micro-FTIR (µFTIR) imaging allows for rapid measurement and identification without manual preselection of putative MP and therefore enables large sample throughputs with high spatial resolution. The resulting huge datasets necessitate automated algorithms for data analysis in a reasonable time frame. Although solutions are available, little is known about the comparability or the level of reliability of their output. For the first time, within our study, we compare two well-established and frequently applied data analysis algorithms in regard to results in abundance, polymer composition and size distributions of MP (11-500 µm) derived from selected environmental water samples: (a) the siMPle analysis tool (systematic identification of MicroPlastics in the environment) in combination with MPAPP (MicroPlastic Automated Particle/fibre analysis Pipeline) and (b) the BPF (Bayreuth Particle Finder). The results of our comparison show an overall good accordance but also indicate discrepancies concerning certain polymer types/clusters as well as the smallest MP size classes. Our study further demonstrates that a detailed comparison of MP algorithms is an essential prerequisite for a better comparability of MP data.

4.
Anal Chem ; 93(21): 7543-7548, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009953

RESUMO

Microplastic pollution research has suffered from inadequate data and tools for spectral (Raman and infrared) classification. Spectral matching tools often are not accurate for microplastics identification and are cost-prohibitive. Lack of accuracy stems from the diversity of microplastic pollutants, which are not represented in spectral libraries. Here, we propose a viable software solution: Open Specy. Open Specy is on the web (www.openspecy.org) and in an R package. Open Specy is free and allows users to view, process, identify, and share their spectra to a community library. Users can upload and process their spectra using smoothing (Savitzky-Golay filter) and polynomial baseline correction techniques (IModPolyFit). The processed spectrum can be downloaded to be used in other applications or identified using an onboard reference library and correlation-based matching criteria. Open Specy's data sharing and session log features ensure reproducible results. Open Specy houses a growing library of reference spectra, which increasingly represents the diversity of microplastics as a contaminant suite. We compared the functionality and accuracy of Open Specy for microplastic identification to commonly used spectral analysis software. We found that Open Specy was the only open source software and the only software with a community library, and Open Specy had comparable accuracy to popular software (OMNIC Picta and KnowItAll). Future developments will enhance spectral identification accuracy as the reference library and functionality grows through community-contributed spectra and community-developed code. Open Specy can also be used for applications beyond microplastic analysis. Open Specy's source code is open source (CC-BY-4.0, attribution only) (https://github.com/wincowgerDEV/OpenSpecy).


Assuntos
Microplásticos , Plásticos , Algoritmos , Software
5.
Environ Sci Technol ; 55(23): 15900-15911, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34841863

RESUMO

Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (>300 µm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m-3 and 0.04 (±0.1 SD) MP m-3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (µXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.


Assuntos
Microplásticos , Poluentes Químicos da Água , Regiões Antárticas , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 54(24): 15893-15903, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33233891

RESUMO

The monitoring of the emerging contaminant, microplastics, in the environment, in water supply, and for food safety is of major interest to science, consumers, and governments. While the chemical analysis of these particles is considered mandatory, a rapid and reliable method for the determination of particle sizes, shapes, and numbers is missing, as existing methods are not fitting into current laboratory measurement routines. In this study, we present an approach for circumventing these issues through the application of quantum cascade laser-based microscopy combined with an automated data analysis. This method allows the measurement of an area of 144 mm2 in 36 min, with a pixel resolution of 4.2 µm, which is an appropriate timeframe and spatial resolution for routine measurements. The performance was compared to the existing state-of-the-art Fourier transform infrared microscopy analyses. Further, the application of the method on various environmental samples was investigated to examine its capacity to provide number and variety of present particles. The described analytical procedure overcomes the last restrictions for schedulable and rapid microplastic monitoring, resulting in a highly detailed data set for particle numbers, particle shapes, and polymer types.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Lasers Semicondutores , Plásticos , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 54(7): 4079-4090, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142614

RESUMO

Recent studies have shown that despite its remoteness, the Arctic region harbors some of the highest microplastic (MP) concentrations worldwide. Here, we present the results of a sampling campaign to assess the vertical distribution of MP particles (>11 µm) at five stations of the HAUSGARTEN observatory. Water column samples were taken with large volume pumps by filtering 218-561 L of seawater at two to four depth strata (near-surface, ∼300 m, ∼1000 m, and above seafloor), and sediment samples were taken with a multiple corer. MP concentrations in the water column ranged between 0 and 1287 N m-3 and in the sediment from 239 to 13 331 N kg-1. Fourier transform infrared spectroscopy (FTIR) imaging with automated data analysis showed that polyamide (39%) and ethylene-propylene-diene rubber (23%) were the most abundant polymers within the water samples and polyethylene-chlorinated (31%) in sediments. MPs ≤ 25 µm accounted for more than half of the synthetic particles in every sample. The largest MP particle recorded was in the 200 µm size class. The concentrations of fibers were not reported, as fiber detection by FTIR imaging was not available at the time of analyses. Two- and three-dimensional simulations of particle transport trajectories suggest different pathways for certain polymer types. A positive correlation between MP size composition and particulate organic carbon indicates interactions with biological processes in the water column.


Assuntos
Plásticos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Água
8.
Anal Bioanal Chem ; 412(30): 8283-8298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104827

RESUMO

Analysis of microplastics (MP) in environmental samples is an emerging field, which is performed with various methods and instruments based either on spectroscopy or thermoanalytical methods. In general, both approaches result in two different types of data sets that are either mass or particle number related. Depending on detection limits of the respective method and instrumentation the derived polymer composition trends may vary. In this study, we compare the results of hyperspectral Fourier-transform infrared (FTIR) imaging analysis and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis performed on a set of environmental samples that differ in complexity and degree of microplastic contamination. The measurements were conducted consecutively, and on exactly the same sample. First, the samples were investigated with FTIR using aluminum oxide filters; subsequently, these were crushed, transferred to glass fiber filters, in pyrolysis cups, and measured via Py-GC/MS. After a general data harmonization step, the trends in MP contamination were thoroughly investigated with regard to the respective sample set and the derived polymer compositions. While the overall trends in MP contamination were very similar, differences were observed in the polymer compositions. Furthermore, polymer masses were empirically calculated from FTIR data and compared with the Py-GC/MS results. Here, a most plausible shape-related overestimation of the calculated polymer masses was observed in samples with larger particles and increased particle numbers. Taking into account the different measurement principles of both methods, all results were examined and discussed, and future needs for harmonization of intermethodological results were identified and highlighted. Graphical abstract.

9.
Environ Sci Technol ; 53(10): 6053-6062, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31021624

RESUMO

Rivers are major transport vectors for microplastics (MP) toward the sea. However, there is evidence that MP can temporarily or permanently be inhibited from migrating downstream by retention in sediments or ingestion by organisms. MP concentrations, compositions, and fate within the different compartments of the fluvial environment are poorly understood. Here, benthic, midstream sediments of two undammed, open-flowing stretches were investigated in the Rhine River, one of the world's busiest inland waterways. Twenty-five samples were collected at ten sites via riverbed access through a diving bell or dredging. We performed the first comprehensive analysis of riverbed sediment aliquots that avoids visual selection bias using state-of-the art automated micro-Fourier-transform infrared spectroscopy (µFTIR) imaging. MP numbers ranged between 0.26 ± 0.01 and 11.07 ± 0.6 × 103 MP kg-1 while MP particles <75 µm accounted for a mean numerical proportion ± SD of 96 ± 6%. MP concentrations decreased with sediment depth. Eighteen polymers were identified in the size range of 11-500 µm; the acrylates/polyurethane/varnish (APV) cluster was found at all sites (mean numerical proportion, 70 ± 19%), possibly indicating particulate pollution from ship antifouling paint. Overall, polymers denser than freshwater (>1 g cm-3) dominated (85 ± 18%), which contrasts the large proportions of low-density polymers previously reported in near-surface compartments of the Rhine.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Rios
10.
Environ Sci Technol ; 52(22): 13279-13288, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30350953

RESUMO

Microplastics (MPs, <5 mm) have been reported as emerging environmental contaminants, but reliable data are still lacking. We compared the two most promising techniques for MP analysis, namely, Raman and Fourier transform infrared (FTIR) spectroscopy, by analyzing MPs extracted from North Sea surface waters. Microplastics >500 µm were visually sorted and manually analyzed by µ-Raman and attenuated total reflection (ATR)-FTIR spectroscopy. Microplastics ≤500 µm were concentrated on gold-coated filters and analyzed by automated single-particle exploration coupled to µ-Raman (ASPEx-µ-Raman) and FTIR imaging (reflection mode). The number of identified MPs >500 µm was slightly higher for µ-Raman (+23%) than ATR-FTIR analysis. Concerning MPs ≤500 µm, ASPEx-µ-Raman quantified two-times higher MP numbers but required a four-times higher analysis time compared to FTIR imaging. Because ASPEx-µ-Raman revealed far higher MP concentrations (38-2621 particles m-3) compared to the results of previous water studies (0-559 particles m-3), the environmental concentration of MPs ≤500 µm may have been underestimated until now. This may be attributed to the exceptional increase in concentration with decreasing MP size found in this work. Our results demonstrate the need for further research to enable time-efficient routine application of ASPEx-µ-Raman for reliable MP counting down to 1 µm.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Mar do Norte , Espectroscopia de Infravermelho com Transformada de Fourier
11.
12.
Anal Bioanal Chem ; 410(21): 5131-5141, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978249

RESUMO

The identification of microplastics becomes increasingly challenging with decreasing particle size and increasing sample heterogeneity. The analysis of microplastic samples by Fourier transform infrared (FTIR) spectroscopy is a versatile, bias-free tool to succeed at this task. In this study, we provide an adaptable reference database, which can be applied to single-particle identification as well as methods like chemical imaging based on FTIR microscopy. The large datasets generated by chemical imaging can be further investigated by automated analysis, which does, however, require a carefully designed database. The novel database design is based on the hierarchical cluster analysis of reference spectra in the spectral range from 3600 to 1250 cm-1. The hereby generated database entries were optimized for the automated analysis software with defined reference datasets. The design was further tested for its customizability with additional entries. The final reference database was extensively tested on reference datasets and environmental samples. Data quality by means of correct particle identification and depiction significantly increased compared to that of previous databases, proving the applicability of the concept and highlighting the importance of this work. Our novel database provides a reference point for data comparison with future and previous microplastic studies that are based on different databases. Graphical abstract ᅟ.

13.
Environ Sci Technol ; 51(19): 11000-11010, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28816440

RESUMO

Although mounting evidence suggests the ubiquity of microplastic in aquatic ecosystems worldwide, our knowledge of its distribution in remote environments such as Polar Regions and the deep sea is scarce. Here, we analyzed nine sediment samples taken at the HAUSGARTEN observatory in the Arctic at 2340-5570 m depth. Density separation by MicroPlastic Sediment Separator and treatment with Fenton's reagent enabled analysis via Attenuated Total Reflection FTIR and µFTIR spectroscopy. Our analyses indicate the wide spread of high numbers of microplastics (42-6595 microplastics kg-1). The northernmost stations harbored the highest quantities, indicating sea ice as a possible transport vehicle. A positive correlation between microplastic abundance and chlorophyll a content suggests vertical export via incorporation in sinking (ice-) algal aggregates. Overall, 18 different polymers were detected. Chlorinated polyethylene accounted for the largest proportion (38%), followed by polyamide (22%) and polypropylene (16%). Almost 80% of the microplastics were ≤25 µm. The microplastic quantities are among the highest recorded from benthic sediments. This corroborates the deep sea as a major sink for microplastics and the presence of accumulation areas in this remote part of the world, fed by plastics transported to the North via the Thermohaline Circulation.


Assuntos
Clorofila/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Plásticos/análise , Polietileno/química , Poluentes Químicos da Água/análise , Regiões Árticas , Clorofila A , Ecossistema , Sedimentos Geológicos/química , Camada de Gelo , Plásticos/química , Polietileno/análise , Polímeros
14.
Environ Sci Technol ; 51(24): 14283-14292, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29110472

RESUMO

Micro-Fourier transform infrared (micro-FTIR) spectroscopy and Raman spectroscopy enable the reliable identification and quantification of microplastics (MPs) in the lower micron range. Since concentrations of MPs in the environment are usually low, the large sample volumes required for these techniques lead to an excess of coenriched organic or inorganic materials. While inorganic materials can be separated from MPs using density separation, the organic fraction impedes the ability to conduct reliable analyses. Hence, the purification of MPs from organic materials is crucial prior to conducting an identification via spectroscopic techniques. Strong acidic or alkaline treatments bear the danger of degrading sensitive synthetic polymers. We suggest an alternative method, which uses a series of technical grade enzymes for purifying MPs in environmental samples. A basic enzymatic purification protocol (BEPP) proved to be efficient while reducing 98.3 ± 0.1% of the sample matrix in surface water samples. After showing a high recovery rate (84.5 ± 3.3%), the BEPP was successfully applied to environmental samples from the North Sea where numbers of MPs range from 0.05 to 4.42 items m-3. Experiences with different environmental sample matrices were considered in an improved and universally applicable version of the BEPP, which is suitable for focal plane array detector (FPA)-based micro-FTIR analyses of water, wastewater, sediment, biota, and food samples.


Assuntos
Plásticos , Águas Residuárias , Poluentes Químicos da Água , Mar do Norte , Compostos Orgânicos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Sci Total Environ ; 918: 170618, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325470

RESUMO

The stomach content of 60 krill specimens from the Southern Ocean were analyzed for the presence of microplastic (MP), by testing different sample volumes, extraction approaches, and applying hyperspectral imaging Fourier-transform infrared spectroscopy (µFTIR). Strict quality control was applied on the generated results. A high load of residual materials in pooled samples hampered the analysis and avoided a reliable determination of putative MP particles. Individual krill stomachs displayed reliable results, however, only after re-treating the samples with hydrogen peroxide. Before this treatment, lipid rich residues of krill resulted in false assignments of polymer categories and hence, false high MP particle numbers. Finally, MP was identified in 4 stomachs out of 60, with only one MP particle per stomach. Our study highlights the importance of strict quality control to verify results before coming to a final decision on MP contamination in the environment to aid the establishment of suitable internationally standardized protocols for sampling and analysis of MP in organisms including their habitats in Southern Ocean and worldwide.


Assuntos
Euphausiacea , Animais , Microplásticos , Plásticos , Ecossistema , Regiões Antárticas , Oceanos e Mares
16.
Sci Total Environ ; 927: 172124, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565351

RESUMO

Recent studies have highlighted the prevalence of microplastic (MP) pollution in the global marine environment and these pollutants have been found to contaminate even remote regions, including the Southern Ocean south of the polar front. Previous studies in this region have mostly focused on MPs larger than 300 µm, potentially underestimating the extent of MP pollution. This study is the first to investigate MPs in marine surface waters south of the polar front, with a focus on small MPs 500-11 µm in size. Seventeen surface water samples were collected in the southern Weddell Sea using an in-house-designed sampling system. The analysis of the entire sample using micro-Fourier transform infrared spectroscopy (µFTIR) with focal plane array (FPA) detection revealed the presence of MPs in all samples, with the vast majority of the MPs detected being smaller than 300 µm (98.3 %). The mean concentration reached 43.5 (± 83.8) MPs m-3, with a wide range from 0.5 to 267.2 MPs m-3. The samples with the highest concentrations differed from the other samples in that they were collected north of the continental slope and the Antarctic Slope Current. Sea ice conditions possibly also influenced these varying concentrations. This study reports high concentrations of MPs compared to other studies in the region. It emphasizes the need to analyze small MPs, down to a size of 11 µm or even smaller, in the Antarctic Treaty Area to gain a more comprehensive understanding of MP pollution and its potential ecological impacts.

17.
Sci Total Environ ; 912: 169276, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086480

RESUMO

Marine debris, particularly microdebris (< 1 mm) poses a potential threat to marine life, including reef-building corals. While previous research has mainly focused on the impact of single polymer microplastics, the effects of natural microdebris, composed of a mixture of materials, have not been explored. Therefore, this study aimed to assess the effects of different microdebris, originating from major sources of pollution, on reef-building corals. For this, we exposed two scleractinian coral species, Pocillopora verrucosa and Stylophora pistillata, known to frequently ingest microplastics, to four types of microdebris in an 8-week laboratory experiment: fragmented environmental plastic debris, artificial fibers from clothing, residues from the automobile sector consisting of tire wear, brake abrasion, and varnish flakes, a single polymer microplastic treatment consisting of polyethylene particles, and a microdebris-free control treatment. Specifically, we (I) compared the effects of the different microdebris on coral growth, necrosis, and photosynthesis, (II) investigated the difference between the microdebris mixtures and the exposure to the single polymer treatment, and (III) identified potential mechanisms causing species-specific effects by contrasting the feeding responses of the two coral species on microdebris and natural food. We show that the fibers and tire wear had the strongest effects on coral physiology, with P. verrucosa being more affected than S. pistillata. Both species showed increased volume growth in response to the microdebris treatments, accompanied by decreased calcification in P. verrucosa. Photosynthetic efficiency of the symbionts was enhanced in both species. The species-specific physiological responses might be attributed to feeding reactions, with P. verrucosa responding significantly more often to microdebris than S. pistillata. These findings highlight the effect of different microdebris on coral physiology and the need for future studies to use particle mixtures to better mimic naturally occurring microdebris and assess its effect on corals in more detail.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Plásticos/toxicidade , Microplásticos , Fotossíntese
18.
Sci Total Environ ; 942: 173808, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848912

RESUMO

High concentrations of microplastic (MP) particles have been reported in the Arctic Ocean. However, studies on the high-resolution lateral and vertical transport of MPs from the European waters to the Arctic are still scarce. Here, we provide information about the concentrations and compositions of MPs in surface, subsurface, and deeper waters (< 1 m, ∼ 4 m, and 17-1679 m) collected at 18 stations on six transects along the Norwegian Coastal Current (NCC) using an improved Neuston Catamaran, the COntinuos MicroPlastic Automatic Sampling System (COMPASS), and in situ pumps, respectively. FTIR microscopy and spectroscopy were applied to measure MP concentration, polymer composition, and size distribution. Results indicate that the concentrations of small microplastics (SMPs, <300 µm) varied considerably (0-1240 MP m-3) within the water column, with significantly higher concentrations in the surface (189 MP m-3) and subsurface (38 MP m-3) waters compared to deeper waters (16 MP m-3). Furthermore, the average concentration of SMPs in surface water samples was four orders of magnitude higher than the abundance of large microplastics (LMPs, >300 µm), and overall, SMPs <50 µm account for >80 % of all detected MPs. However, no statistically significant geographical patterns were observed in SMP concentrations in surface/subsurface seawaters between the six sampling transects, suggesting a relatively homogeneous horizontal distribution of SMPs in the upper ocean within the NCC/Norwegian Atlantic Current (NwAC) interface. The Lagrangian particle dispersal simulation model further enabled us to assess the large-scale transport of MPs from the Northern European waters to the Arctic.

19.
Environ Pollut ; 333: 122078, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379878

RESUMO

The global increase of plastic production, linked with an overall plastic misuse and waste mismanagement, leads to an inevitable increase of plastic debris that ends up in our oceans. One of the major sinks of this pollution is the deep-sea floor, which is hypothesized to accumulate in its deepest points, the hadal trenches. Little is known about the magnitude of pollution in these trenches, given the remoteness of these environments, numerous factors influencing the input and sinking behavior of plastic debris from shallower environments. This study represents to the best of our knowledge the largest survey of (macro)plastic debris sampled at hadal depths, down to 9600 m. Industrial packaging and material assignable to fishing activities were the most common debris items in the Kuril Kamchatka trench, most likely deriving from long-distance transport by the Kuroshio extension current (KE) or from regional marine traffic and fishing activities. The chemical analysis by (Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy revealed that the main polymers detected were polyethylene (PE), polypropylene (PP) and nylon. Plastic waste is reaching the depths of the trench, although some of the items were only partially broken down. This finding suggests that complete breakdown into secondary microplastics (MP) may not always occur at the sea surface or though the water column. Due to increased brittleness, plastic debris may break apart upon reaching the hadal trench floor where plastic degrading factors were thought to be, coming off. The KKT's remote location and high sedimentation rates make it a potential site for high levels of plastic pollution, potentially making it one of the world's most heavily contaminated marine areas and an oceanic plastic deposition zone.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Poluentes Químicos da Água/análise , Poluição Ambiental/análise , Microplásticos , Oceanos e Mares
20.
Chemosphere ; 333: 138883, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169088

RESUMO

Quality assurance and quality control (QA/QC) techniques are critical to analytical chemistry, and thus the analysis of microplastics. Procedural blanks are a key component of QA/QC for quantifying and characterizing background contamination. Although procedural blanks are becoming increasingly common in microplastics research, how researchers acquire a blank and report and/or use blank contamination data varies. Here, we use the results of laboratory procedural blanks from a method evaluation study to inform QA/QC procedures for microplastics quantification and characterization. Suspected microplastic contamination in the procedural blanks, collected by 12 participating laboratories, had between 7 and 511 particles, with a mean of 80 particles per sample (±SD 134). The most common color and morphology reported were black fibers, and the most common size fraction reported was 20-212 µm. The lack of even smaller particles is likely due to limits of detection versus lack of contamination, as very few labs reported particles <20 µm. Participating labs used a range of QA/QC techniques, including air filtration, filtered water, and working in contained/'enclosed' environments. Our analyses showed that these procedures did not significantly affect blank contamination. To inform blank subtraction, several subtraction methods were tested. No clear pattern based on total recovery was observed. Despite our results, we recommend commonly accepted procedures such as thorough training and cleaning procedures, air filtration, filtered water (e.g., MilliQ, deionized or reverse osmosis), non-synthetic clothing policies and 'enclosed' air flow systems (e.g., clean cabinet). We also recommend blank subtracting by a combination of particle characteristics (color, morphology and size fraction), as it likely provides final microplastic particle characteristics that are most representative of the sample. Further work should be done to assess other QA/QC parameters, such as the use of other types of blanks (e.g., field blanks, matrix blanks) and limits of detection and quantification.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Laboratórios , Controle de Qualidade , Água/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA