RESUMO
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Linfo-Histiocitose Hemofagocítica/patologia , Citocinas/metabolismo , Interferon gama/genética , Linfócitos T , Células Matadoras NaturaisRESUMO
mTOR inhibitors such as sirolimus are increasingly used in the management of multilineage immune cytopenia (m-IC) in children. Although sirolimus is effective in improving IC, it is unclear how sirolimus affects the broader immune dysregulation associated with m-IC. We profiled T- and B-cell subsets longitudinally and measured cytokines and chemokines before and after sirolimus treatment. Eleven of the 12 patients with m-IC who tolerated sirolimus were followed for a median duration of 17 months. All patients had an improvement in IC, and sirolimus therapy did not result in significant decreases in T-, B- and NK-cell numbers. However, the expansion and activation of circulating T follicular helper and the Th1 bias noted before the initiation of sirolimus were significantly decreased. Features of chronic T-cell activation and exhaustion within effector memory compartments of CD4+ and CD8+ T cells decreased with sirolimus therapy. Corresponding to these changes, plasma levels of CXCL9 and CXCL10 also decreased. Interestingly, no significant improvement in the proportion of class-switched memory B cells or frequencies of CD4+ naive T cells were noted. Longer follow-up and additional studies are needed to validate these findings and evaluate the effect of sirolimus on B-cell maturation.
Assuntos
Subpopulações de Linfócitos B , Linfócitos T CD4-Positivos , Criança , Humanos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Linfócitos T CD8-PositivosRESUMO
BACKGROUND: Quantifying T-cell activation is essential for the diagnosis and evaluation of treatment response in various hyperinflammatory and immune regulatory disorders, including hemophagocytic lymphohistiocytosis. Plasma soluble IL-2 receptor (sIL-2R) is a well-established biomarker for evaluating systemic T-cell activation. However, the limited availability of sIL-2R testing could result in delayed diagnosis. Furthermore, high sIL-2R levels may not always reflect T-cell activation. OBJECTIVES: To address these limitations, this study investigated whether cell surface markers of T-cell activation, HLA-DR, and CD38, as assessed by flow cytometry, could be used to quantify systemic T-cell activation in a variety of inflammatory disease states and examine its correlation with sIL-2R levels. METHODS: Results for sIL-2R, CXCL9, and ferritin assays were obtained from patient's medical records. Frequency of HLA-DR+CD38high(hi) T-cells was assessed in different T-cell subsets using flow cytometry. RESULTS: In this study's cohort, activation in total CD8+ T (r = 0.65; P < .0001) and CD4+ (r = 0.42; P < .0001) T-cell subsets significantly correlated with plasma sIL-2R levels. At the disease onset, the frequency of HLA-DR+CD38hi T cells in CD8+ T (r = 0.65, P < .0001) and CD4+ T (r = 0.77; P < .0001) effector memory (TEM) compartments correlated strongly with sIL-2R levels. Evaluation of T-cell activation markers in follow-up samples also revealed a positive correlation for both CD4+ TEM and CD8+ TEM activation with sIL-2R levels; thus, attesting its utility in initial diagnosis and in evaluating treatment response. The frequency of HLA-DR+CD38hi T-cells in the CD8+ TEM compartment also correlated with plasma CXCL9 (r = 0.42; P = .0120) and ferritin levels (r = 0.32; P = .0037). CONCLUSIONS: This study demonstrates that flow cytometry-based direct T-cell activation assessed by HLA-DR+CD38hi T cells accurately quantifies T-cell activation and strongly correlates with sIL-2R levels across a spectrum of hyperinflammatory and immune dysregulation disorders.
Assuntos
Doenças do Sistema Imunitário , Linfo-Histiocitose Hemofagocítica , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfócitos T CD8-Positivos , Antígenos HLA-DR , Subpopulações de Linfócitos T , Receptores de Interleucina-2 , Ferritinas , Ativação LinfocitáriaRESUMO
BACKGROUND: Severe hepatitis cases in children are increasingly recognized, but the exact etiology remains unknown in a significant proportion of patients. Cases of indeterminate severe hepatitis (iSH) may progress to indeterminate pediatric acute liver failure (iPALF), so understanding its immunobiology is critical to preventing disease progression. Hemophagocytic lymphohistiocytosis (HLH) is a systemic hyperinflammatory disorder associated with T-cell and macrophage activation with liver injury. OBJECTIVES: We hypothesized that a high proportion of patients with iSH demonstrate systemic T-cell activation similar to HLH before developing iPALF and that the degree of T-cell activation in iSH might correlate with outcomes. METHODS: From 2019 to 2022, 14 patients with iSH and 7 patients with PALF of known, nonimmune etiology were prospectively enrolled. We compared immune signatures of iSH, HLH, known PALF, and healthy controls. RESULTS: We found that patients with iSH have increased CD8+ T-cell activation and high IFN-γ activity similar to HLH. The amplitude of CD8+ T-cell activation was predictive of iSH progression to iPALF. We also found that in patients with iSH, ferritin had only modest elevation. However, the ratio of age-normalized plasma soluble IL-2 receptor to ferritin level can distinguish iSH from known PALF and HLH. As proof of concept, we report that in 3 patients with steroid-refractory iSH, emapalumab, an IFN-γ blocking antibody used in combination with steroids, improved liver function and may have prevented progression to PALF. CONCLUSIONS: Flow-based T-cell activation markers could help in early identification and risk stratification for targeted intervention in patients with iSH.
RESUMO
Pediatric Evans syndrome (pES) is increasingly identified as the presenting manifestation of several inborn errors of immunity. Despite an improved understanding of genetic defects in pES, the underlying immunobiology of pES is poorly defined, and characteristic diagnostic immune parameters are lacking. We describe the immune characteristics of 24 patients with pES and compared them with 22 patients with chronic immune thrombocytopenia (cITP) and 24 healthy controls (HCs). Compared with patients with cITP and HC, patients with pES had increased circulating T-follicular helper cells (cTfh), increased T-cell activation, and decreased naïve CD4+ T cells for age. Despite normal or high immunoglobulin G (IgG) in most pES at presentation, class-switched memory B cells were decreased. Within the cTfh subset, we noted features of postactivation exhaustion with upregulation of several canonical checkpoint inhibitors. T-cell receptor ß chain (TCR-ß) repertoire analysis of cTfh cells revealed increased oligoclonality in patients with pES compared with HCs. Among patients with pES, those without a known gene defect had a similar characteristic immune abnormality as patients with defined genetic defects. Similarly, patients with pES with normal IgG had similar T-cell abnormalities as patients with low IgG. Because genetic defects have been identified in less than half of patients with pES, our findings of similar immune abnormalities across all patients with pES help establish a common characteristic immunopathology in pES, irrespective of the underlying genetic etiology.
Assuntos
Anemia Hemolítica Autoimune/imunologia , Ativação Linfocitária , Linfócitos T Auxiliares-Indutores/imunologia , Trombocitopenia/imunologia , Adolescente , Adulto , Anemia Hemolítica Autoimune/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/patologia , Linfócitos T Auxiliares-Indutores/patologia , Trombocitopenia/patologia , Adulto JovemRESUMO
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a potentially life-threatening sequela of severe acute respiratory syndrome coronavirus 2 infection characterized by hyperinflammation and multiorgan dysfunction. Although hyperinflammation is a prominent manifestation of MIS-C, there is limited understanding of how the inflammatory state of MIS-C differs from that of well-characterized hyperinflammatory syndromes such as hemophagocytic lymphohistiocytosis (HLH). OBJECTIVES: We sought to compare the qualitative and quantitative inflammatory profile differences between patients with MIS-C, coronavirus disease 2019, and HLH. METHODS: Clinical data abstraction from patient charts, T-cell immunophenotyping, and multiplex cytokine and chemokine profiling were performed for patients with MIS-C, patients with coronavirus disease 2019, and patients with HLH. RESULTS: We found that both patients with MIS-C and patients with HLH showed robust T-cell activation, markers of senescence, and exhaustion along with elevated TH1 and proinflammatory cytokines such as IFN-γ, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10. In comparison, the amplitude of T-cell activation and the levels of cytokines/chemokines were higher in patients with HLH when compared with patients with MIS-C. Distinguishing inflammatory features of MIS-C included elevation in TH2 inflammatory cytokines such as IL-4 and IL-13 and cytokine mediators of angiogenesis, vascular injury, and tissue repair such as vascular endothelial growth factor A and platelet-derived growth factor. Immune activation and hypercytokinemia in MIS-C resolved at follow-up. In addition, when these immune parameters were correlated with clinical parameters, CD8+ T-cell activation correlated with cardiac dysfunction parameters such as B-type natriuretic peptide and troponin and inversely correlated with platelet count. CONCLUSIONS: Overall, this study characterizes unique and overlapping immunologic features that help to define the hyperinflammation associated with MIS-C versus HLH.
Assuntos
COVID-19 , Linfo-Histiocitose Hemofagocítica , COVID-19/complicações , Criança , Citocinas/metabolismo , Humanos , Ligantes , Linfo-Histiocitose Hemofagocítica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica , Fator A de Crescimento do Endotélio VascularRESUMO
While targeting CD19+ hematologic malignancies with CAR T cell therapy using single chain variable fragments (scFv) has been highly successful, novel strategies for applying CAR T cell therapy with other tumor types are necessary. In the current study, CAR T cells were designed using a ligand binding domain instead of an scFv to target stem-like leukemia cells. Thrombopoietin (TPO), the natural ligand to the myeloproliferative leukemia protein (MPL) receptor, was used as the antigen binding domain to engage MPL expressed on hematopoietic stem cells (HSC) and erythropoietic and megakaryocytic acute myeloid leukemias (AML). TPO-CAR T cells were tested in vitro against AML cell lines with varied MPL expression to test specificity. TPO-CAR T cells were specifically activating and cytotoxic against MPL+ leukemia cell lines. Though the TPO-CAR T cells did not extend survival in vivo, it successfully cleared the MPL+ fraction of leukemia cells. As expected, we also show the TPO-CAR is cytotoxic against MPL expressing bone marrow compartment in AML xenograft models. The data collected demonstrate preclinical potential of TPO-CAR T cells for stem-like leukemia through assessment of targeted killing of MPL+ cells and may facilitate subsequent HSC transplant under reduced intensity conditioning regimens.
Assuntos
Leucemia Mieloide Aguda , Trombopoetina , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Ligantes , Proteínas de Neoplasias , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Citocinas , Receptores de Trombopoetina/genética , Linfócitos T/metabolismo , Trombopoetina/metabolismoRESUMO
Early onset multisystem autoimmunity is commonly the defining feature of IPEX. Recurrent sinopulmonary infections and CVID-like phenotype were not previously recognized as a presentation in IPEX. Herein, we describe three extended family members with IPEX. In addition to autoimmunity, all three had a CVID-like presentation consisting of recurrent sinopulmonary infections, hypogammaglobulinemia and B-cell class switching defect. In vitro studies have shown that the B cell class switching defect is not B cell intrinsic. Additionally, a marked increase in circulating T follicular helper (cTFH) cells with high IFN-γ and IL-17 secretion on stimulation was noted in our patients. The dysregulated cTFH cells could contribute to a decreased B cell class switching. However, the exact mechanism of how expanded and dysregulated cTFH lead to B cell class switching defect and hypogammaglobulinemia in our patients is not clear. Our study could extend the clinical spectrum of IPEX to include a CVID-like presentation.
Assuntos
Agamaglobulinemia/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/congênito , Diarreia/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças do Sistema Imunitário/congênito , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Agamaglobulinemia/terapia , Anemia Hemolítica Autoimune/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Diarreia/genética , Diarreia/terapia , Eczema/imunologia , Família , Feminino , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Heterozigoto , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/terapia , Switching de Imunoglobulina/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Enteropatias/imunologia , Masculino , Pessoa de Meia-Idade , Linhagem , Pneumonia/imunologia , Recidiva , Sinusite/imunologia , Adulto JovemRESUMO
Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.
Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico , Trifosfato de Adenosina/farmacologia , Algoritmos , Sequência de Aminoácidos , Animais , Arginina/genética , Ácido Aspártico/genética , Sítios de Ligação/genética , Cloretos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , RNA Complementar/genética , Xenopus laevisRESUMO
Data are limited regarding the immune status of CD40 ligand (CD40L)-deficient carriers and hematopoietic stem cell transplantation (HSCT) outcomes using them as donors for CD40L-deficient patients. Therefore, we studied the immune profiles of 7 carriers, 4 of whom were HSCT donors for family members with CD40L deficiency, and we characterized their HSCT outcomes. Immunoglobulin profiles, CD4, CD8, circulating T-follicular helper (cTfh) cells, and regulatory T cells (Tregs) in carriers were comparable to those in healthy controls. CD40L expression in carriers ranged from 37% to 78%. cTfh cells from carriers expressed higher CD40L compared with total CD4 cells or the memory CD4 compartment, suggesting a potential advantage to CD40L-expressing cTfh cells. Tregs had minimal CD40L expression in carriers and healthy controls. So we postulated that HSCT using donors who were CD40L carriers may result in excellent immune reconstitution without immune dysregulation. Four CD40L-deficient patients underwent HSCT from carriers who had CD40L expression from 37% to 63%. All patients engrafted, achieved excellent immune reconstitution with lack of opportunistic infections, graft-versus-host disease, and immune dysregulation; stable CD40L expression mimicked that of donors 1 to 5 years after HSCT. Immunoglobulin independence was achieved in 3 of the 4 patients. We demonstrated higher CD40L expression in the cTfh compartment of carriers and excellent immune reconstitution using donors who were CD40L carriers in CD40L-deficient patients.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Ligante de CD40/genética , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , ImunidadeRESUMO
Hematopoietic stem and progenitor cell (HSPC) lentiviral gene therapy is a promising strategy toward a lifelong cure for hemophilia A (HA). The primary risks associated with this approach center on the requirement for pre-transplantation conditioning necessary to make space for, and provide immune suppression against, stem cells and blood coagulation factor VIII, respectively. Traditional conditioning agents utilize genotoxic mechanisms of action, such as DNA alkylation, that increase risk of sterility, infection, and developing secondary malignancies. In the current study, we describe a non-genotoxic conditioning protocol using an immunotoxin targeting CD117 (c-kit) to achieve endogenous hematopoietic stem cell depletion and a cocktail of monoclonal antibodies to provide transient immune suppression against the transgene product in a murine HA gene therapy model. This strategy provides high-level engraftment of hematopoietic stem cells genetically modified ex vivo using recombinant lentiviral vector (LV) encoding a bioengineered high-expression factor VIII variant, termed ET3. Factor VIII procoagulant activity levels were durably elevated into the normal range and phenotypic correction achieved. Furthermore, no immunological rejection or development of anti-ET3 immunity was observed. These preclinical data support clinical translation of non-genotoxic antibody-based conditioning in HSPC LV gene therapy for HA.
RESUMO
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) is a rare disease caused by mutations to the UNC13D gene and the subsequent absence or decreased activity of the Munc13-4 protein. Munc13-4 is essential for the exocytosis of perforin and granzyme containing granules from cytotoxic cells. Without it, these cells are able to recognize an immunological insult but are unable to execute their cytotoxic functions. The result is a hyperinflammatory state that, if left untreated, is fatal. At present, the only curative treatment is hematopoietic stem cell transplantation (HSCT), but eligibility and response to this treatment are largely dependent on the ability to control inflammation before HSCT. In this study, we describe an optimized lentiviral vector that can restore Munc13-4 expression and degranulation capacity in both transduced FHL3 patient T cells and transduced hematopoietic stem cells from the FHL3 (Jinx) disease model.
Assuntos
Terapia Genética , Vetores Genéticos , Lentivirus/genética , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Células 3T3 , Animais , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/genética , Camundongos , Mutação , Linfócitos T/metabolismo , Transdução GenéticaRESUMO
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(ß,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.
Assuntos
Aminoácidos/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Espaço Extracelular/química , Sequência de Aminoácidos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , XenopusRESUMO
PURPOSE: Studies of SF1126, an RGDS targeted, water-soluble prodrug of LY294002, are currently nearing completion in two adult Phase I trials. Herein, we performed a preclinical evaluation of SF1126 as a PI-3K inhibitor for Phase I trials in the treatment of recurrent neuroblastoma (NB). METHODS: The effects of SF1126 on pAkt-MDM2 cell signaling, proliferation, apoptosis, and migration were determined using a panel of NB cell lines, and anti-tumor activity was determined using a xenograft model of NB. RESULTS: SF1126 blocks MDM2 activation, IGF-1 induced activation of Akt, and the upregulation of survivin induced by IGF-1. It also increases sensitivity to doxorubicin in vitro and was found to exhibit marked synergistic activity in combination with doxorubicin. Treatment disrupts the integrin αvß3/αvß5-mediated organization of the actin cytoskeleton as well as the α4ß1/α5ß1-mediated processes essential to metastasis. In vivo, SF1126 markedly inhibits tumor growth in NB xenografted mice (P < 0.05). CONCLUSIONS: A pan PI-3 kinase inhibitor has potent antitumor activity and induces apoptosis in multiple neuroblastoma cell lines. The observed effects of SF1126 on the p-Akt-MDM2-survivin axis suggest a patient selection paradigm in which NB tumors with increased pAkt-MDM2-survivin signaling may predict response to SF1126 alone or in combination with standard chemotherapy regimens that contain anthracyclines.
Assuntos
Antineoplásicos/farmacologia , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Neuroblastoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Pró-Fármacos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/antagonistas & inibidores , Cromonas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/ultraestrutura , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Fosforilação/efeitos dos fármacos , Pró-Fármacos/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Distribuição Aleatória , Survivina , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mutations in the Notch3 receptor result in the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephelopathy (CADASIL) syndrome, a heritable arteriopathy predisposing to early onset stroke. Based upon clinical evidence that CADASIL arteriopathy results in degeneration and loss of vascular smooth muscle cells (VSMC) from the arterial wall, we postulated that Notch3 signaling is a critical determinant of VSMC survival. We initially established that both transient and constitutive Notch3 signaling promoted VSMC survival in response to the proapoptotic Fas ligand (FasL). Resistance to FasL-induced apoptosis was associated with the induction of c-FLIP, a primary inhibitor of the FasL signaling pathway. We determined that Notch3's regulation of c-FLIP was independent of the activity of the classical DNA-binding protein, RBP-Jk, but dependent upon cross-talk activation of the ERK/MAPK pathway. We extended our observations to the in vivo context by determining a coordinate regulation of Notch3 and c-FLIP within the arterial wall in response to injury. Furthermore, we defined that expression levels of Notch3 and c-FLIP are coordinately up-regulated within the neointima of remodeled arteries. Taken together, these findings provide initial evidence that Notch3 signaling may be a critical determinant of VSMC survival and vascular structure by modulating the expression of downstream mediators of apoptosis via signaling cross-talk with the ERK/MAPK pathway.
Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Superfície Celular , Transdução de Sinais , Animais , Aorta/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Artérias Carótidas/patologia , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Ativação Enzimática , Proteína Ligante Fas , Masculino , Músculo Liso/citologia , Músculo Liso/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Retroviridae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica , Transfecção , Regulação para CimaRESUMO
The Notch family of receptors and downstream effectors plays a critical role in cell fate determination during vascular ontogeny. Moreover, the human cerebral autosomal dominant artriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) syndrome of premature stroke and dementia is a heritable arteriopathy with alterations in vascular smooth muscle cells (VSMCs) resulting from mutations within Notch3. However, the expression and regulation of the Notch and hairy-related transcription factor (HRT) pathway in adult VSMCs in vitro and in vivo remain poorly characterized. The present study documents that the well-described modulation of VSMC fate in response to vascular injury and growth factor activation involves a coordinate regulation of the Notch and HRT pathways. Furthermore, platelet-derived growth factor promotes a similar coordinate down-regulation of the Notch receptors and HRT genes in cultured VSMCs via an ERK-dependent signaling pathway. Moreover, we established that HRT1 and HRT2 are direct downstream target genes of Notch3 signaling in VSMCs and determined that the activity of the nuclear protein RBP-Jk is essential for their regulation. These findings provide initial insight into the context- and cell type-dependent coordinate regulation of Notch3 and downstream HRT transcriptional pathway effector genes in VSMCs in vitro and in vivo that may have important implications for understanding the role of Notch signaling in human health and vascular disease.
Assuntos
Proteínas Quinases Ativadas por Mitógeno/fisiologia , Músculo Liso Vascular/metabolismo , Proteínas Nucleares , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores de Superfície Celular , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Masculino , Músculo Liso Vascular/citologia , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
The Notch signaling pathway plays vital roles in vascular development and homeostasis. However, the functional role of HRT1, a primary downstream effector of Notch signaling in VSMC, is poorly characterized. In the present study, we postulated that HRT1 plays fundamental roles in modulating VSMC fate. To test the hypothesis that HRT1 is coupled to growth regulation, we generated VSMC lines constitutively overexpressing HRT1 (HRT1SMC) and demonstrated an exaggerated growth behavior compared to its control cell line. The lack of cell cycle arrest at confluence in HRT1SMC was associated with an attenuated up-regulation of the cell cycle inhibitor, p21(WAF1/CIP1). We further established that both transient and constitutive HRT1 signaling promoted VSMC survival in response to serum deprivation and pro-apoptotic Fas ligand. Resistance to apoptosis was associated with the induction of Akt expression/activity, a well-described anti-apoptotic mediator. Overall, these findings provide initial evidence that HRT1 functions as a critical determinant of VSMC proliferation and survival.