Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Biol ; 102(6): 1470-1480, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029524

RESUMO

Anthropogenic noise has the potential to alter community dynamics by modifying the strength of nested ecological interactions such as predation. Direct effects of noise on per capita predation rates have received much attention but the context in which predation occurs is often oversimplified. For instance, many animals interact with conspecifics while foraging and these nontrophic interactions can positively or negatively influence per capita predation rates. These effects are often referred to as multiple-predator effects (MPEs). The extent to which noise can modulate MPEs and thereby indirectly alter per capita predation remains unknown. To address this question, we derived the relationship between per capita predation rate and prey density, namely the functional response (FR), of single and pairs of the invasive topmouth gudgeon Pseudorasbora parva when feeding on water fleas under two noise conditions: control ambient noise estimated at 95 dB re 1 µPa and ambient noise supplemented with motorboat sounds whose relative importance over ambient noise ranged from 4.81 to 27 dB. In addition, we used video recordings to track fish movements. To detect MPEs, we compared the observed group-level FRs to predicted group-level FRs inferred from the individual FRs and based on additive effects only. Regardless of the number of fish and the noise condition, the FR was always of type II, showing predation rate in a decelerating rise to an upper asymptote. Compared to the noiseless condition, the predation rate of single fish exposed to noise did not differ at high prey densities but was significantly lower at low prey densities, resulting in an FR with the same asymptote but a less steep initial slope. Noise also reduced fish mobility, which might explain the decrease in predation rate at low prey densities. Conspecific presence suppressed the individual response to noise, the FRs of two fish (observed group-level FRs) being perfectly similar between the two noise conditions. Although observed and predicted group-level FRs did not differ significantly, observed group-level FRs tended to fall in the low range of predicted group-level FRs, suggesting antagonism and a negative effect of nontrophic interactions on individual foraging performance. Interestingly, the difference between predicted and observed group-level FRs was not greater with noise, which means that noise did not strengthen MPEs. Our results show that when considering the social context of foraging, here through the presence of a conspecific, anthropogenic noise does not compromise foraging in the invasive P. parva.


Assuntos
Cadeia Alimentar , Espécies Introduzidas , Animais , Peixes/fisiologia , Água Doce , Comportamento Predatório/fisiologia
2.
J Theor Biol ; 458: 68-77, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30196064

RESUMO

Parasites are important components of food webs. Although their direct effects on hosts are well-studied, indirect impacts on trophic networks, thus on non-host species, remain unclear. In this study, we investigate the consequences of parasitism on coexistence and stability within a simple trophic module: one predator consuming two prey species in competition. We test how such effects depend on the infected species (prey or predator). We account for two effects of parasitism: the virulence effect (parasites affect the infected species intrinsic growth rate through direct effects on fecundity or mortality) and the interaction effect (increased vulnerability of infected prey or increased food intake of infected predators). Results show that coexistence is favored when effects have intermediate intensity. We link this result to modifications of direct and apparent competitions among prey species. Given a prey infection, accounting for susceptible-infected population structure highlights that coexistence may also be reduced due to predator-parasite competition. Parasites affect stability by modulating energy transfer from prey to predator. Predator infection therefore has a stabilizing effect due to increased energy fluxes and/or predator mortality. Our results suggest that parasites potentially increase species coexistence. Precise predictions however require an assessment of various parasite effects. We discuss the implications of our results for the functioning of trophic networks.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Comportamento Predatório , Animais
3.
Sci Total Environ ; 928: 172489, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621539

RESUMO

There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.


Assuntos
Ecossistema , Zooplâncton , Zooplâncton/fisiologia , Animais , Som , Monitoramento Ambiental/métodos , Copépodes/fisiologia
4.
Aquat Toxicol ; 162: 73-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25781394

RESUMO

Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 µg L(-1)) and high (50 µg L(-1)) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 µg L(-1) and between 16.5 and 50 µg L(-1)), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to determine pollutant effects in complex ecosystems. More generally, our model underscores the importance of ecosystem-scale studies to predict the effects of pollutants.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Daphnia/fisiologia , Ecossistema , Eutrofização/efeitos dos fármacos , Água Doce , Modelos Biológicos , Fitoplâncton/fisiologia , Zooplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA