Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Toxicol ; 44(3): 333-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37699698

RESUMO

The HUMIMIC skin-liver Chip2 microphysiological systems model using the epidermal model, EpiDerm™, was reported previously to mimic application route-dependent metabolism of the hair dye, 4-amino-2-hydroxytoluene (AHT). Therefore, we evaluated the use of alternative skin models-SkinEthic™, EpiDermFT™ and PhenionFT™-for the same purpose. In static incubations, AHT permeation was similar using SkinEthic™ and EpiDerm™ models. Older Day 21 (D21) SkinEthic™ models with a thicker stratum corneum did not exhibit a greater barrier to AHT (overall permeation was the same in D17 and D21 models). All epidermal models metabolised AHT, with the EpiDerm™ exhibiting higher N-acetylation than SkinEthic™ models. AHT metabolism by D21 SkinEthic™ models was lower than that by D17 SkinEthic™ and EpiDerm™ models, thus a thicker stratum corneum was associated with fewer viable cells and a lower metabolic activity. AHT permeation was much slower using PhenionFT™ compared to epidermal models and better reflected permeation of AHT through native human skin. This model also extensively metabolised AHT to N-acetyl-AHT. After a single topical or systemic application of AHT to Chip2 model with PhenionFT™, medium was analysed for parent and metabolites over 5 days. The first-pass metabolism of AHT was demonstrated, and the introduction of a wash step after 30 min decreased the exposure to AHT and its metabolites by 33% and 40%-43%, respectively. In conclusion, epidermal and FT skin models used in the Chip2 can mimic the first-pass skin metabolism of AHT. This highlights the flexibility of the Chip2 to incorporate different skin models according to the purpose.


Assuntos
Cresóis , Tinturas para Cabelo , Humanos , Tinturas para Cabelo/metabolismo , Pele/metabolismo , Compostos de Anilina/metabolismo , Fígado
2.
J Appl Toxicol ; 44(2): 287-300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37700462

RESUMO

The HUMMIC skin-liver Chip2 microphysiological system using EpiDerm™ and HepaRG and stellate liver spheroids was used to evaluate the route-specific metabolism and toxicodynamic effects of genistein. Human-relevant exposure levels were compared: 60 nM representing the plasma concentration expected after topical application of a cosmetic product and 1 µM representing measured plasma concentrations after ingesting soya products. Genistein was applied as single and repeated topical and/or systemic doses. The kinetics of genistein and its metabolites were measured over 5 days. Toxicodynamic effects were measured using transcriptional analyses of skin and liver organoids harvested on Days 2 and 5. Route-specific differences in genistein's bioavailability were observed, with first-pass metabolism (sulfation) occurring in the skin after topical application. Only repeated application of 1 µM, resembling daily oral intake of soya products, induced statistically significant changes in gene expression in liver organoids only. This was concomitant with a much higher systemic concentration of genistein which was not reached in any other dosing scenario. This suggests that single or low doses of genistein are rapidly metabolised which limits its toxicodynamic effects on the liver and skin. Therefore, by facilitating longer and/or repeated applications, the Chip2 can support safety assessments by linking relevant gene modulation with systemically available parent or metabolite(s). The rate of metabolism was in accordance with the short half-life observed in in vivo in humans, thus supporting the relevance of the findings. In conclusion, the skin-liver Chip2 provides route-specific information on metabolic fate and toxicodynamics that may be relevant to safety assessment.


Assuntos
Genisteína , Pele , Humanos , Genisteína/toxicidade , Toxicocinética , Fígado
3.
Regul Toxicol Pharmacol ; 131: 105132, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35217105

RESUMO

A novel approach was developed to help characterize the biokinetics of the cosmetic ingredient, phenoxyethanol, to help assess the safety of the parent and its major stable metabolite. In the first step of this non-animal tiered approach, primary human hepatocytes were used to confirm or refute in silico predicted metabolites, and elucidate the intrinsic clearance of phenoxyethanol. A key result was the identification of the major metabolite, phenoxyacetic acid (PAA), the exposure to which in the kidney was subsequently predicted to far exceed that of phenoxyethanol in blood or other tissues. Therefore, a novel aspect of this approach was to measure in the subsequent step the formation of PAA in the cells dosed with phenoxyethanol that were used to provide points of departure (PoDs) and express the intracellular exposure as the Cmax and AUC24. This enabled the calculation of the intracellular concentrations of parent and metabolite at the PoD in the cells used to derive this value. These concentrations can be compared with in vivo tissue levels to conclude on the safety margin. The lessons from this case study will help to inform the design of other non-animal safety assessments.


Assuntos
Cosméticos , Etilenoglicóis , Cosméticos/toxicidade , Etilenoglicóis/toxicidade , Humanos , Medição de Risco
4.
J Appl Toxicol ; 41(10): 1553-1567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33594739

RESUMO

We used TissUse's HUMIMIC Chip2 microfluidic model, incorporating reconstructed skin models and liver spheroids, to investigate the impact of consumer-relevant application scenarios on the metabolic fate of the hair dye, 4-amino-2-hydroxytoluene (AHT). After a single topical or systemic application of AHT to Chip2 models, medium was analysed for parent and metabolites over 5 days. The metabolic profile of a high dose (resulting in a circuit concentration of 100 µM based on 100% bioavailability) of AHT was the same after systemic and topical application to 96-well EpiDerm™ models. Additional experiments indicated that metabolic capacity of EpiDerm™ models were saturated at this dose. At 2.5 µM, concentrations of AHT and several of its metabolites differed between application routes. Topical application resulted in a higher Cmax and a 327% higher area under the curve (AUC) of N-acetyl-AHT, indicating a first-pass effect in the EpiDerm™ models. In accordance with in vivo observations, there was a concomitant decrease in the Cmax and AUC of AHT-O-sulphate after topical, compared with systemic application. A similar alteration in metabolite ratios was observed using a 24-well full-thickness skin model, EpiDermFT™, indicating that a first-pass effect was also possible to detect in a more complex model. In addition, washing the EpiDermFT™ after 30 min, thus reflecting consumer use, decreased the systemic exposure to AHT and its metabolites. In conclusion, the skin-liver Chip2 model can be used to (a) recapitulate the first-pass effect of the skin and alterations in the metabolite profile of AHT observed in vivo and (b) provide consumer-relevant data regarding leave-on/rinse-off products.


Assuntos
Compostos de Anilina/metabolismo , Compostos de Anilina/toxicidade , Cresóis/metabolismo , Cresóis/toxicidade , Tinturas para Cabelo/metabolismo , Tinturas para Cabelo/toxicidade , Fígado/metabolismo , Pele/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Pele/efeitos dos fármacos
5.
Front Pharmacol ; 14: 1076254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843954

RESUMO

All cosmetic ingredients registered in Europe must be evaluated for their safety using non-animal methods. Microphysiological systems (MPS) offer a more complex higher tier model to evaluate chemicals. Having established a skin and liver HUMIMIC Chip2 model demonstrating how dosing scenarios impact the kinetics of chemicals, we investigated whether thyroid follicles could be incorporated to evaluate the potential of topically applied chemicals to cause endocrine disruption. This combination of models in the HUMIMIC Chip3 is new; therefore, we describe here how it was optimized using two chemicals known to inhibit thyroid production, daidzein and genistein. The MPS was comprised of Phenion® Full Thickness skin, liver spheroids and thyroid follicles co-cultured in the TissUse HUMIMIC Chip3. Endocrine disruption effects were determined according to changes in thyroid hormones, thyroxine (T4) and 3,3',5-triiodothyronine (T3). A main part of the Chip3 model optimization was the replacement of freshly isolated thyroid follicles with thyrocyte-derived follicles. These were used in static incubations to demonstrate the inhibition of T4 and T3 production by genistein and daidzein over 4 days. Daidzein exhibited a lower inhibitory activity than genistein and both inhibitory activities were decreased after a 24 h preincubation with liver spheroids, indicating metabolism was via detoxification pathways. The skin-liver-thyroid Chip3 model was used to determine a consumer-relevant exposure to daidzein present in a body lotion based on thyroid effects. A "safe dose" of 0.235 µg/cm2 i.e., 0.047% applied in 0.5 mg/cm2 of body lotion was the highest concentration of daidzein which does not result in changes in T3 and T4 levels. This concentration correlated well with the value considered safe by regulators. In conclusion, the Chip3 model enabled the incorporation of the relevant exposure route (dermal), metabolism in the skin and liver, and the bioactivity endpoint (assessment of hormonal balance i.e., thyroid effects) into a single model. These conditions are closer to those in vivo than 2D cell/tissue assays lacking metabolic function. Importantly, it also allowed the assessment of repeated doses of chemical and a direct comparison of systemic and tissue concentrations with toxicodynamic effects over time, which is more realistic and relevant for safety assessment.

6.
Br J Pharmacol ; 179(14): 3560-3575, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780479

RESUMO

BACKGROUND AND PURPOSE: Transient receptor potential melastatin 3 (TRPM3) is a non-selective cation channel that plays a pivotal role in the peripheral nervous system as a transducer of painful heat signals. Alternative splicing gives rise to several TRPM3 variants. The functional consequences of these splice isoforms are poorly understood. Here, the pharmacological properties of TRPM3 variants arising from alternative splicing in the pore-forming region were compared. EXPERIMENTAL APPROACH: Calcium microfluorimetry and patch clamp recordings were used to compare the properties of heterologously expressed TRPM3α1 (long pore variant) and TRPM3α2-α6 (short pore variants). Furthermore, site-directed mutagenesis was done to investigate the influence of the length of the pore loop on the channel function. KEY RESULTS: All short pore loop TRPM3α variants (TRPM3α2-α6) were activated by the neurosteroid pregnenolone sulphate (PS) and by nifedipine, whereas the long pore loop variant TRPM3α1 was insensitive to either compound. In contrast, TRPM3α1 was robustly activated by clotrimazole, a compound that does not directly activate the short pore variants but potentiates their responses to PS. Clotrimazole-activated TRPM3α1 currents were largely insensitive to established TRPM3α2 antagonists and were only partially inhibited upon activation of the µ opioid receptor. Finally, by creating a set of mutant channels with pore loops of intermediate length, we showed that the length of the pore loop dictates differential channel activation by PS and clotrimazole. CONCLUSION AND IMPLICATIONS: Alternative splicing in the pore-forming region of TRPM3 defines the channel's pharmacological properties, which depend critically on the length of the pore-forming loop. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Assuntos
Canais de Cátion TRPM , Processamento Alternativo , Cálcio/metabolismo , Clotrimazol , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPM/metabolismo
7.
Sci Rep ; 12(1): 14158, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986043

RESUMO

Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Translocação Genética
8.
Toxicology ; 448: 152637, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33220337

RESUMO

Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.


Assuntos
Fígado/efeitos dos fármacos , Permetrina/farmacocinética , Floroglucinol/análogos & derivados , Pele/efeitos dos fármacos , Terpenos/farmacocinética , Técnicas de Cultura de Tecidos/métodos , Humanos , Inseticidas/toxicidade , Fígado/citologia , Fígado/metabolismo , Técnicas de Cultura de Órgãos/métodos , Permetrina/toxicidade , Floroglucinol/farmacocinética , Floroglucinol/toxicidade , Pele/citologia , Pele/metabolismo , Terpenos/toxicidade
9.
Cell Calcium ; 73: 40-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880196

RESUMO

TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calmodulina/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fotólise/efeitos dos fármacos , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA