Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 32(8): 651-663, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452121

RESUMO

Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.


Assuntos
Glicômica , Proteínas , Glicômica/métodos , Glicosilação , Humanos , Polissacarídeos/química , Proteínas/metabolismo
2.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591262

RESUMO

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos , Biofarmácia/métodos , Anticorpos Monoclonais/metabolismo , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Laboratórios , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
3.
Hum Mol Genet ; 28(12): 2062-2077, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163085

RESUMO

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.


Assuntos
Fucosiltransferases/genética , Glicosiltransferases/genética , Polissacarídeos/sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Fucosiltransferases/sangue , Fucosiltransferases/química , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/sangue , Glucuronosiltransferase/química , Glicosilação , Fator 1-alfa Nuclear de Hepatócito/sangue , Fator 1-alfa Nuclear de Hepatócito/química , Humanos , Imunoglobulina G/metabolismo , Proteínas de Membrana/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas
4.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242110

RESUMO

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Sanguíneas/análise , Glicômica/métodos , Complicações na Gravidez/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
J Proteome Res ; 19(1): 85-91, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31747749

RESUMO

The N-glycosylation profile of total human plasma proteins could be a useful biomarker for various pathological states. Reliable high-throughput methods for such profiling have been developed. However, studies of relative importance of genetic and environmental factors in regulating plasma N-glycome are scarce. The aim of our study was to determine the role of genetic factors in phenotypic variation of plasma N-glycan profile through the estimates of its heritability. Thirty-nine total plasma N-glycome traits were analyzed in 2816 individuals from the TwinsUK data set. For the majority of the traits, high heritability estimates (>50%) were obtained pointing at a significant contribution of genetic factors in plasma N-glycome variation, especially for glycans mostly attached to immunoglobulins. We have also found several structures with higher environmental contribution to their variation.


Assuntos
Plasma , Polissacarídeos , Glicosilação , Humanos
6.
Biochim Biophys Acta ; 1860(8): 1710-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26746104

RESUMO

BACKGROUND: Numerous proteins depend on correct glycosylation for their proper function and nearly all membrane, as well as secreted, proteins are glycosylated. Glycosylation of membrane proteins plays a crucial role in many processes including the intercellular recognition and intermolecular interactions on the cell surface. The composition of N-glycans attached to membrane proteins has not been sufficiently studied due to the lack of efficient and reproducible analytical methods. METHODS: The aim of this study was to optimise cloud-point extraction (CPE) of membrane proteins with the non-ionic detergent Triton X-114 and analyse their N-glycosylation using hydrophilic interaction liquid chromatography (HILIC-UPLC). Purification of isolated proteins from the excess of detergent proved to be the key step. Therefore, several purification procedures were tested to efficiently remove detergent, while retaining maximum protein recoveries. RESULTS: CPE showed to be an efficient method to simultaneously extract membrane and soluble proteins, which subsequently resulted in different N-glycan profiles of the aforementioned protein groups. The resulting protocol showed satisfactory reproducibility and potential for N-glycan analysis of both membrane and intracellular (soluble) proteins from different kinds of biological material. CONCLUSIONS: This method can be used as a new analytical tool for reliable detection and quantification of oligomannose and complex type N-glycans attached to membrane proteins, thus serving to distinguish between differences in cell types and states. GENERAL SIGNIFICANCE: The simple method was successfully optimised to generate reliable HILIC-UPLC profiles of N-glycans released from membrane proteins. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Membrana Celular/química , Glicoproteínas , Proteínas de Membrana , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Octoxinol
7.
Biochim Biophys Acta ; 1860(8): 1615-22, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26923767

RESUMO

BACKGROUND: Glycans, complex oligosaccharides, are directly involved in almost every biological process, have a fundamental role in the immune system, and are probably involved in nearly every human disease. However, glycosylation has been greatly ignored in the area of allogeneic hematopoietic stem cell transplantation (alloHSCT) and graft versus host disease (GVHD). Both acute and chronic GVHD are multisystemic debilitating immunological disturbances arising after alloHSCT. SCOPE OF REVIEW: In this paper, we review the glycosylation research already done in the field of alloHSCT and GVHD and evaluate further potential of glycan analysis in GVHD by looking into resembling inflammatory and autoimmune conditions. MAJOR CONCLUSIONS: Glycan research could bring significant improvement in alloHSCT procedure with reduction in following complications, such as GVHD. Identifying glycan patterns that induce self-tolerance and the ones that cause the auto- and allo-immune response could lead to innovative and tissue-specific immunomodulative therapy instead of the current immunosuppressive treatment, enabling preservation of the graft-versus-tumor effect. Moreover, improved glycan pattern analyses could offer a more complete assessment and greatly needed dynamic biomarkers for GVHD. GENERAL SIGNIFICANCE: This review is written with a goal to encourage glycan research in the field of alloHSCT and GVHD as a perspective tool leading to improved engraftment, discovery of much needed biomarkers for GVHD, enabling an appropriate therapy and improved monitoring of therapeutic response. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Pesquisa Biomédica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Terapia de Imunossupressão/métodos , Doença Aguda , Aloenxertos , Animais , Biomarcadores/metabolismo , Doença Crônica , Glicosilação , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/terapia , Humanos
8.
Biochim Biophys Acta ; 1860(8): 1786-94, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26827872

RESUMO

BACKGROUND: Image-guided tumor ablation is a technique whereby needle-like applicators are placed directly into solid tumors under guidance typically with computed tomography or ultrasound. Changes in IgG and IgM antibody glycosylation were studied during ablation-induced immune response to cancer, and the use of glycosylation as a biomarker for diagnosis, prognosis and disease treatment was examined. METHODS: Plasma from 27 tumor patients was collected immediately before, after and for 6 months following ablation. IgG and IgM antibodies were isolated by use high-throughput chromatography, and analyzed by hydrophilic liquid chromatography. Thorough identification of glycan structures in each chromatography peak was performed by nano-liquid chromatography electrospray ionization mass spectrometry. RESULTS: Although antibody glycosylation was found to vary with cancer type, discernable patterns of change based on the successful treatment of tumors by ablation were not identified. One patient with renal clear cell carcinoma and poor disease outcome had unexpectedly high amount of oligomannose IgG glycans during the whole period of monitoring. In contrast, IgM antibodies did not follow the same pattern. CONCLUSIONS: These findings suggest that glycosylation patterns are indicative of an immune system that is unable to prevent different types of cancer, rather than products of the immunostimulatory response to the ablation of tumor itself. Analyses of the outcome effect suggested that IgG glycosylation and IgM glycosylation are not associated with tumor ablation. GENERAL SIGNIFICANCE: Present work opens a new way for parallel determination of glycosylation changes of both IgG and IgM antibodies by use of high-throughput methods, and their future use as biomarkers for disease diagnosis and prognosis. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Anticorpos Antineoplásicos/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Neoplasias , Idoso , Idoso de 80 Anos ou mais , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/patologia , Neoplasias/terapia , Espectrometria de Massa de Íon Secundário
9.
Electrophoresis ; 38(22-23): 2922-2930, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28556996

RESUMO

Fibrinogen (FIB) is a secretory glycoprotein synthesized by hepatocytes that has a key role in blood clotting. Its glycosylation has not been studied in detail and little is known about the biological variability of FIB N-glycosylation, mainly due to the lack of fast, simple, and robust approaches to purify FIB from blood plasma samples. In recent years, customised chromatographic monoliths have been used for a variety of biological applications due to their unique characteristics. Here we describe development and optimisation of monolithic supports bearing monoclonal anti-human fibrinogen antibodies in a single column as well as in multi-well plate formats with high FIB specificity and binding capacity for fast immunoaffinity purification of FIB from human blood samples. The developed semi-high-throughput workflow has been successfully applied for FIB immunoaffinity isolation and subsequent ultra performance liquid chromatography N-glycosylation analysis in ten healthy human individuals, demonstrating the potential of monolithic supports in glycomics studies.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Fibrinogênio/química , Ensaios de Triagem em Larga Escala/métodos , Anticorpos Imobilizados/metabolismo , Anticorpos Monoclonais/metabolismo , Fibrinogênio/análise , Fibrinogênio/metabolismo , Glicosilação , Humanos , Reprodutibilidade dos Testes
10.
J Am Soc Nephrol ; 27(3): 933-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26185202

RESUMO

Glycans constitute the most abundant and diverse form of the post-translational modifications, and animal studies have suggested the involvement of IgG glycosylation in mechanisms of renal damage. Here, we explored the associations between IgG glycans and renal function in 3274 individuals from the TwinsUK registry. We analyzed the correlation between renal function measured as eGFR and 76 N-glycan traits using linear regressions adjusted for covariates and multiple testing in the larger population. We replicated our results in 31 monozygotic twin pairs discordant for renal function. Results from both analyses were then meta-analyzed. Fourteen glycan traits were associated with renal function in the discovery sample (P<6.5×10(-4)) and remained significant after validation. Those glycan traits belong to three main glycosylation features: galactosylation, sialylation, and level of bisecting N-acetylglucosamine of the IgG glycans. These results show the role of IgG glycosylation in kidney function and provide novel insight into the pathophysiology of CKD and potential diagnostic and therapeutic targets.


Assuntos
Glicosilação , Imunoglobulina G/sangue , Polissacarídeos/sangue , Insuficiência Renal Crônica/sangue , Acetilglucosamina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Galactose/metabolismo , Taxa de Filtração Glomerular , Humanos , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Polissacarídeos/química , Insuficiência Renal Crônica/fisiopatologia , Adulto Jovem
11.
Mol Cell Proteomics ; 13(6): 1598-610, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719452

RESUMO

The biological and clinical relevance of glycosylation is becoming increasingly recognized, leading to a growing interest in large-scale clinical and population-based studies. In the past few years, several methods for high-throughput analysis of glycans have been developed, but thorough validation and standardization of these methods is required before significant resources are invested in large-scale studies. In this study, we compared liquid chromatography, capillary gel electrophoresis, and two MS methods for quantitative profiling of N-glycosylation of IgG in the same data set of 1201 individuals. To evaluate the accuracy of the four methods we then performed analysis of association with genetic polymorphisms and age. Chromatographic methods with either fluorescent or MS-detection yielded slightly stronger associations than MS-only and multiplexed capillary gel electrophoresis, but at the expense of lower levels of throughput. Advantages and disadvantages of each method were identified, which should inform the selection of the most appropriate method in future studies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina G/genética , Espectrometria de Massas/métodos , Polissacarídeos/genética , Adulto , Cromatografia Líquida , Eletroforese Capilar , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polimorfismo Genético , Polissacarídeos/isolamento & purificação
13.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507656

RESUMO

BACKGROUND AND OBJECTIVES: Antibodies (Abs) specific for the low-density lipoprotein receptor-related protein 4 (LRP4) occur in up to 5% of patients with myasthenia gravis (MG). The objective of this study was to profile LRP4-Ab effector actions. METHODS: We evaluated the efficacy of LRP4-specific compared with AChR-specific IgG to induce Ab-dependent cellular phagocytosis (ADCP), Ab-dependent cellular cytotoxicity (ADCC), and Ab-dependent complement deposition (ADCD). Functional features were additionally assessed in an independent AChR-Ab+ MG cohort. Levels of circulating activated complement proteins and frequency of Fc glycovariants were quantified and compared with demographically matched 19 healthy controls. RESULTS: Effector actions that required binding of Fc domains to cellular FcRs such as ADCC and ADCP were detectable for both LRP4-specific and AChR-specific Abs. In contrast to AChR-Abs, LRP4-binding Abs showed poor efficacy in inducing complement deposition. Levels of circulating activated complement proteins were not substantially increased in LRP4-Ab-positive MG. Frequency of IgG glycovariants carrying 2 sialic acid residues, indicative for anti-inflammatory IgG activity, was decreased in patients with LRP4-Ab-positive MG. DISCUSSION: LRP4-Abs are more effective in inducing cellular FcR-mediated effector mechanisms than Ab-dependent complement activation. Their functional signature is different from AChR-specific Abs.


Assuntos
Miastenia Gravis , Receptores Colinérgicos , Humanos , Autoanticorpos , Proteínas Relacionadas a Receptor de LDL , Receptores Proteína Tirosina Quinases , Imunoglobulina G , Proteínas do Sistema Complemento
14.
Nat Commun ; 15(1): 7111, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160153

RESUMO

In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Metabolômica/métodos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Metilação de DNA , Transcriptoma , Pessoa de Meia-Idade , Estudo de Associação Genômica Ampla , Catar/epidemiologia , Epigenoma , Adulto , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Multiômica
15.
Commun Biol ; 6(1): 312, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959410

RESUMO

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Assuntos
Imunoglobulina G , Processamento de Proteína Pós-Traducional , Transferrina , Humanos , Glicosilação , Ensaios de Triagem em Larga Escala , Imunoglobulina G/sangue , Imunoglobulina G/química , Transferrina/química , Transferrina/isolamento & purificação , Polissacarídeos/análise
16.
J Clin Lipidol ; 17(5): 643-658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37550151

RESUMO

BACKGROUND: The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE: This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS: HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS: Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION: Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipoproteínas HDL/genética , Proteômica , Hiperlipoproteinemia Tipo II/genética , Relação Estrutura-Atividade , Receptores de LDL/genética , Mutação
17.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
18.
EBioMedicine ; 94: 104692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451904

RESUMO

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Envelhecimento , Diferenciação Celular , Síndrome de Down/genética , Quinases Dyrk
19.
Front Cell Dev Biol ; 10: 982609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619858

RESUMO

Immunoglobulin G is posttranslationally modified by the addition of complex N-glycans affecting its function and mediating inflammation at multiple levels. IgG glycome composition changes with age and health in a predictive pattern, presumably due to inflammaging. As a result, a novel biological aging biomarker, glycan clock of age, was developed. Glycan clock of age is the first of biological aging clocks for which multiple studies showed a possibility of clock reversal even with simple lifestyle interventions. However, none of the previous studies determined to which extent the glycan clock can be turned, and how much is fixed by genetic predisposition. To determine the contribution of genetic and environmental factors to phenotypic variation of the glycan clock, we performed heritability analysis on two TwinsUK female cohorts. IgG glycans from monozygotic and dizygotic twin pairs were analyzed by UHPLC and glycan age was calculated using the glycan clock. In order to determine additive genetic, shared, and unique environmental contributions, a classical twin design was applied. Heritability of the glycan clock was calculated for participants of one cross-sectional and one longitudinal cohort with three time points to assess the reliability of measurements. Heritability estimate for the glycan clock was 39% on average, suggesting a moderate contribution of additive genetic factors (A) to glycan clock variation. Remarkably, heritability estimates remained approximately the same in all time points of the longitudinal study, even though IgG glycome composition changed substantially. Most environmental contributions came from shared environmental factors (C), with unique environmental factors (E) having a minor role. Interestingly, heritability estimates nearly doubled, to an average of 71%, when we included age as a covariant. This intervention also inflated the estimates of unique environmental factors contributing to glycan clock variation. A complex interplay between genetic and environmental factors defines alternative IgG glycosylation during aging and, consequently, dictates the glycan clock's ticking. Apparently, environmental factors (including lifestyle choices) have a strong impact on the biological age measured with the glycan clock, which additionally clarifies why this aging clock is one of the most potent biomarkers of biological aging.

20.
Arthritis Res Ther ; 24(1): 206, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008868

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease for which prediction of long-term prognosis from disease's outset is not clinically feasible. The importance of immunoglobulin G (IgG) and its Fc N-glycosylation in inflammation is well-known and studies described its relevance for several autoimmune diseases, including RA. Herein we assessed the association between IgG N-glycoforms and disease prognosis at 2 years in an early inflammatory arthritis cohort. METHODS: Sera from 118 patients with early inflammatory arthritis naïve to treatment sampled at baseline were used to obtain IgG Fc glycopeptides, which were then analyzed in a subclass-specific manner by liquid chromatography coupled to mass spectrometry (LC-MS). Patients were prospectively followed and a favorable prognosis at 2 years was assessed by a combined index as remission or low disease activity (DAS28 < 3.2) and normal functionality (HAQ ≤ 0.25) while on treatment with conventional synthetic DMARDs and never used biologic DMARDs. RESULTS: We observed a significant association between high levels of IgG2/3 Fc galactosylation (effect 0.627 and adjusted p value 0.036 for the fully galactosylated glycoform H5N4F1; effect -0.551 and adjusted p value 0.04963 for the agalactosylated H3N4F1) and favorable outcome after 2 years of treatment. The inclusion of IgG glycoprofiling in a multivariate analysis to predict the outcome (with HAQ, DAS28, RF, and ACPA included in the model) did not improve the prognostic performance of the model. CONCLUSION: Pending confirmation of these findings in larger cohorts, IgG glycosylation levels could be used as a prognostic marker in early arthritis, to overcome the limitations of the current prognostic tools.


Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/uso terapêutico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA