Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Res ; 57(1): 19, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689353

RESUMO

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Assuntos
Astrócitos , Sinalização do Cálcio , Óxido Nítrico , Animais , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar
2.
J Vasc Res ; 60(2): 87-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331352

RESUMO

Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.


Assuntos
Pressão Arterial , Sistema Cardiovascular , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Sistema Cardiovascular/metabolismo , Endotélio Vascular/metabolismo , Proteína alfa-5 de Junções Comunicantes
3.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269788

RESUMO

Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.


Assuntos
Astrócitos , Células Endoteliais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Retina/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806312

RESUMO

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.


Assuntos
Conexinas , Acoplamento Neurovascular , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Microcirculação
5.
FASEB J ; 32(4): 2137-2147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29217667

RESUMO

Na+-Ca2+ exchanger (NCX) contributes to control the intracellular free Ca2+ concentration ([Ca2+]i), but the functional activation of NCX reverse mode (NCXrm) in endothelial cells is controversial. We evaluated the participation of NCXrm-mediated Ca2+ uptake in the endothelium-dependent vasodilation of rat isolated mesenteric arterial beds. In phenylephrine-contracted mesenteries, the acetylcholine (ACh)-induced vasodilation was abolished by treatment with the NCXrm blockers SEA0400, KB-R7943, or SN-6. Consistent with that, the ACh-induced hyperpolarization observed in primary cultures of mesenteric endothelial cells and in smooth muscle of isolated mesenteric resistance arteries was attenuated by KB-R7943 and SEA0400, respectively. In addition, both blockers abolished the NO production activated by ACh in intact mesenteric arteries. In contrast, the inhibition of NCXrm did not affect the vasodilator responses induced by the Ca2+ ionophore, ionomycin, and the NO donor, S-nitroso- N-acetylpenicillamine. Furthermore, SEA0400, KB-R7943, and a small interference RNA directed against NCX1 blunted the increase in [Ca2+]i induced by ACh or ATP in cultured endothelial cells. The analysis by proximity ligation assay showed that the NO-synthesizing enzyme, eNOS, and NCX1 were associated in endothelial cell caveolae of intact mesenteric resistance arteries. These results indicate that the activation of NCXrm has a central role in Ca2+-mediated vasodilation initiated by ACh in endothelial cells of resistance arteries.-Lillo, M. A., Gaete, P. S., Puebla, M., Ardiles, N. M., Poblete, I., Becerra, A., Simon, F., Figueroa, X. F. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries.


Assuntos
Cálcio/metabolismo , Células Endoteliais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Vasodilatação , Animais , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/antagonistas & inibidores
6.
J Vasc Res ; 50(6): 498-511, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217770

RESUMO

BACKGROUND/AIMS: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+). RESULTS: Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca(2+), while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. CONCLUSIONS: In intact resistance vessels, changes in flow induce NO production by transient Ca(2+)-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca(2+)-independent PI3K-Akt-mediated phosphorylation.


Assuntos
Artérias Mesentéricas/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistência Vascular , Animais , Velocidade do Fluxo Sanguíneo , Cálcio/metabolismo , Caveolina 1/metabolismo , Ativação Enzimática , Masculino , Mecanotransdução Celular , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Serina , Circulação Esplâncnica , Estresse Mecânico , Fatores de Tempo
7.
Oxid Med Cell Longev ; 2021: 2678134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688389

RESUMO

Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca2+]i of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O2 ·-) formation, and endothelial cell [Ca2+]i were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide 10Panx (60 µM) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOSS1177) and Akt at serine 473 (P-AktS473). In addition, probenecid or 10Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca2+]i increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca2+ ions from the buffer solution and in the presence of 100 µM mibefradil or 10 µM Ni2+. As expected, Ni2+ also abolished the increment in [Ca2+]i. Expression of Nav1.2, Nav1.6, and Cav3.2 isoforms of voltage-dependent Na+ and Ca2+ channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O2 ·- production. Treatment with 10 µM TEMPOL or 100 µM apocynin prevented the increase in O2 ·- formation, ACh-induced vasodilation, P-eNOSS1177, and P-AktS473 observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Nav channels and Cav3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOSS1177, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Vasodilatação , Animais , Artérias/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Conexinas/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Superóxidos/metabolismo , Tetrodotoxina/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
8.
Sci Rep ; 9(1): 7932, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138827

RESUMO

Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O2• -) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O2• --dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Conexinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Animais , Células Endoteliais/patologia , Inflamação/patologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Superóxidos/metabolismo
9.
Front Cell Neurosci ; 9: 59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25805969

RESUMO

Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca(2+) signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca(2+) signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca(2+) waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca(2+) entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca(2+)-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca(2+) signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca(2+) influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca(2+) signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process.

10.
J Androl ; 31(3): 314-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20378932

RESUMO

Hypobaric hypoxia (HH), an environmental condition of high altitude encountered by mountaineers, miners, and observatory, rural health, border patrol, and rural education workers, jeopardizes normal physiologic functions in humans. The present study was conducted to evaluate the effects of intermittent HH (IHH; equivalent to 4600 m above mean sea level) on oxidative stress and the protective role of dietary ascorbic acid on rat testis and epididymis. Ten-week-old male Wistar rats were assigned to 1 of 6 groups: 1) normobaric (Nx), 2) Nx + physiologic solution (Nx + PS), 3) Nx + ascorbic acid (Nx + AA), 4) IHH, 5) IHH + PS, or 6) IHH + AA. Animals subjected to IHH were exposed for 96 hours followed by normobaric conditions for 96 hours for a total of 32 days. The control groups (2 and 5) were injected with doses of PS, and the treated groups (3 and 6) were injected with doses of AA (10 mg x kg(-1) body weight) at an interval of 96 hours. Rats were sacrificed on day 32 after initiation of the protocol. The testis and epididymis were collected to determine the activity and expression of glutathione reductase and the levels of lipid peroxide formation. An epididymal sperm count was also performed in each animal. The results of this study revealed that IHH induced lipid peroxidation, a reduction in glutathione reductase activity in testis and epididymis, and a significant decrease in epididymal sperm count. Treatment with AA prevented these changes. In conclusion, AA was capable of decreasing oxidative stress in testis and epididymis under IHH. This protection by AA of the IHH-induced lipid peroxidation can be explained in part by the preservation of glutathione reductase activity in these organs.


Assuntos
Doença da Altitude/metabolismo , Ácido Ascórbico/farmacologia , Epididimo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Testículo/metabolismo , Doença da Altitude/prevenção & controle , Animais , Dieta , Glutationa Redutase/metabolismo , Hipóxia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Contagem de Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA