Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169246, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072274

RESUMO

Karst aquifers are globally prized freshwater sources, posing a significant preservation challenge. These aquifers typically exhibit dual or even triple porosities, encompassing matrix, fractures-fissures and conduits, rendering them highly responsive to variations in chemical characteristics and hydraulic head. In coastal regions, these aquifers often possess extensive subsurface conduit networks intricately linked to the rock matrix, facilitating groundwater discharge into the sea. Therefore, they display acute sensitivity to seawater intrusion, swiftly reacting to changes in precipitation and pumping regimes. This makes them exceptionally vulnerable to short-term meteorological fluctuations and long-term climate change. Their high heterogeneity leads to uneven penetration of the freshwater-seawater interface, causing rapid seawater intrusion inland over significant distances. The Mediterranean region, characterized by water deficit and water stress, faces strong impacts from climate change, featuring a warming atmospheric trend exceeding the global average, along with diminished rainfall exacerbating water scarcity. Increasing water demands for agriculture, urban development, and the growing tourism industry, because of global change, are worsening water stress. Our primary research objectives were analyzing the environmental consequences of global and climate change on seawater intrusion in Mediterranean coastal karst aquifers, with a focus on the role of the double-flow model, thus contributing to the understanding of the processes involved. To achieve this, we selected a study region on Mallorca Island in the western Mediterranean, where a karst aquifer system discharges into the sea. We employed various study methods, notably hydrochemical techniques and multi-isotopic analysis, encompassing the examination of 2H and 18O isotopes in water, 87Sr/86Sr ratio, Sr and B concentrations, and δ11B in water. A key finding is the rebound effect, wherein aquifers recontaminate due to solute molecular back-diffusion following cessation of extractions and the retreat of marine intrusion, providing insight into the impact of climate and global change on Mediterranean karst aquifers.

2.
Sci Total Environ ; 877: 162751, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921871

RESUMO

The potential toxic and carcinogenic effects of chlorinated solvents in groundwater on human health and aquatic ecosystems require very effective remediation strategies of contaminated groundwater to achieve the low legal cleanup targets required. The transition zones between aquifers and bottom aquitards occur mainly in prograding alluvial fan geological contexts. Hence, they are very frequent from a hydrogeological point of view. The transition zone consists of numerous thin layers of fine to coarse-grained clastic fragments (e.g., medium sands and gravels), which alternate with fine-grained materials (clays and silts). When the transition zones are affected by DNAPL spills, free-phase pools accumulate on the less conductive layers. Owing to the low overall conductivity of this zone, the pools are very recalcitrant. Little field research has been done on transition zone remediation techniques. Injection of iron microparticles has the disadvantage of the limited accessibility of this reagent to reach the entire source of contamination. Biostimulation of indigenous microorganisms in the medium has the disadvantage that few of the microorganisms are capable of complete biodegradation to total mineralization of the parent contaminant and metabolites. A field pilot test was conducted at a site where a transition zone existed in which DNAPL pools of PCE had accumulated. In particular, the interface with the bottom aquitard was where PCE concentrations were the highest. In this pilot test, a combined strategy using ZVI in microparticles and biostimulation with lactate in the form of lactic acid was conducted. Throughout the test it was found that the interdependence of the coupled biotic and abiotic processes generated synergies between these processes. This resulted in a greater degradation of the PCE and its transformation products. With the combination of the two techniques, the mobilization of the contaminant source of PCE was extremely effective.


Assuntos
Água Subterrânea , Tetracloroetileno , Poluentes Químicos da Água , Humanos , Ácido Láctico , Ecossistema , Poluentes Químicos da Água/análise , Biodegradação Ambiental
3.
Sci Total Environ ; 843: 156841, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750160

RESUMO

The occurrence of nitrate is the most significant type of pollution affecting groundwater globally, being a major contributor to the poor condition of water bodies. This pollution is related to livestock-agricultural and urban activities, and the nitrate presence in drinking water has a clear impact on human health. For example, it causes the blue child syndrome. Moreover, the high nitrate content in aquifers and surface waters significantly affects aquatic ecosystems since it is responsible for the eutrophication of surface water bodies. A treatability test was performed in the laboratory to study the decrease of nitrate in the capture zone of water supply wells. For this purpose, two boreholes were drilled from which groundwater and sediments were collected to conduct the test. The goal was to demonstrate that nitrate in groundwater can be decreased much more efficiently using combined abiotic and biotic methods with micro-zero valent iron and biostimulation with lactic acid, respectively, than when both strategies are used separately. The broader implications of this goal derive from the fact that the separate use of these reagents decreases the efficiency of nitrate removal. Thus, while nitrate is removed using micro-valent iron, high concentrations of harmful ammonium are also generated. Furthermore, biostimulation alone leads to overgrowth of other microorganisms that do not result in denitrification, therefore complete denitrification requires more time to occur. In contrast, the combined strategy couples abiotic denitrification of nitrate with biostimulation of microorganisms capable of biotically transforming the abiotically generated harmful ammonium. The treatability test shows that the remediation strategy combining in situ chemical reduction using micro-zero valent iron and biostimulation with lactic acid could be a viable strategy for the creation of a reactive zone around supply wells located in regions where groundwater and porewater in low permeability layers are affected by diffuse nitrate contamination.


Assuntos
Compostos de Amônio , Água Subterrânea , Poluentes Químicos da Água , Desnitrificação/fisiologia , Ecossistema , Água Subterrânea/química , Ferro/química , Ácido Láctico , Nitratos/análise , Óxidos de Nitrogênio , Água , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 29(1): 1508-1520, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34355320

RESUMO

Chlorinated solvents are among the common groundwater contaminants that show high complexity in their distribution in the subsoil. Microorganisms play a vital role in the natural attenuation of chlorinated solvents. Thus far, how the in situ soil microbial community responds to chlorinated solvent contamination has remained unclear. In this study, the microbial community distribution within two boreholes located in the source area of perchloroethene (PCE) was investigated via terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. Microbial data were related to the lithological and geochemical data and the concentration and isotopic composition of chloroethenes to determine the key factors controlling the distribution of the microbial communities. The results indicated that Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phylums in the sediment. The statistical correlation with the environmental data proved that fine granulometry, oxygen tolerance, terminal electron-acceptor processes, and toxicity control microbial structure. This study improves our understanding of how the microbial community in the subsoil responds to high concentrations of chlorinated solvents.


Assuntos
Bactérias/classificação , Cloro , Água Subterrânea , Poluentes Químicos da Água , Proteobactérias , Solventes
5.
Sci Total Environ ; 816: 151532, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752872

RESUMO

Chlorinated solvents occur as dense nonaqueous phase liquid (DNAPL) or as solutes when dissolved in water. They are present in many pollution sites in urban and industrial areas. They are toxic, carcinogenic, and highly recalcitrant in aquifers and aquitards. In the latter case, they migrate by molecular diffusion into the matrix. When aquitards are fractured, chlorinated solvents also penetrate as a free phase through the fractures. The main objective of this study was to analyze the biogeochemical processes occurring inside the matrix surrounding fractures and in the joint-points zones. The broader implications of this objective derive from the fact that, incomplete natural degradation of contaminants in aquitards generates accumulation of daughter products. This causes steep concentration gradients and back-diffusion fluxes between aquitards and high hydraulic conductivity layers. This offers opportunities to develop remediation strategies based, for example, on the coupling of biotic and reactive abiotic processes. The main results showed: 1) Degradation occurred especially in the matrix adjacent to the orthogonal network of fractures and textural heterogeneities, where texture contrasts favored microbial development because these zones constituted ecotones. 2) A dechlorinating bacterium not belonging to the Dehalococcoides genus, namely Propionibacterium acnes, survived under the high concentrations of dissolved perchloroethene (PCE) in contact with the PCE-DNAPL and was able to degrade it to trichloroethene (TCE). Dehalococcoides genus was able to conduct PCE reductive dechlorination at least up to cis-1,2-dichloroethene (cDCE), which shows again the potential of the medium to degrade chloroethenes in aquitards. 3) Degradation of PCE in the matrix resulted from the coupling of reactive abiotic and biotic processes-in the first case, promoted by Fe2+ sorbed to iron oxides, and in the latter case, related to dechlorinating microorganisms. The dechlorination resulting from these coupling processes is slow and limited by the need for an adequate supply of electron donors.


Assuntos
Água Subterrânea , Tricloroetileno , Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Cloro , Tricloroetileno/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 28(21): 26871-26884, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495954

RESUMO

The presence of ecotones in transition zones between geological strata (e.g. layers of gravel and sand interbedded with layers of silt in distal alluvial fan deposits) in aquifers plays a significant role in regulating the flux of matter and energy between compartments. Ecotones are characterised by steep physicochemical and biological gradients and considerable biological diversity. However, the link between organic pollutants and degradation potential in ecotones has scarcely been studied. The aim of this study is to relate the presence of ecotones with the dehalogenation of chloroethenes. A field site was selected where chloroethene contamination occurs in a granular aquifer with geological heterogeneities. The site is monitored by multilevel and conventional wells. Groundwater samples were analysed by chemical, isotopic, and molecular techniques. The main results were as follows: (1) two ecotones were characterised in the source area, one in the upper part of the aquifer and the second in the transition zone to the bottom aquitard, where the aged pool is located; (2) the ecotone located in the transition zone to the bottom aquitard has greater microbial diversity, due to higher geological heterogeneities; (3) both ecotones show the reductive dehalogenation of perchloroethylene and trichloroethylene; and (4) these ecotones are the main zones of the reductive dehalogenation of the pollutants, given the more reductive conditions at the centre of the plume. These findings suggest that ecotones are responsible for natural attenuation, where oxic conditions prevailed at the aquifer and bioremediation strategies could be applied more effectively in these zones to promote complete reductive dehalogenation.


Assuntos
Água Subterrânea , Tetracloroetileno , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Tricloroetileno/análise , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 712: 135679, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31785913

RESUMO

In the transition zone between aquifers and aquitards, DNAPL pools of carbon tetrachloride and chloroform accumulate because of heterogeneity in this zone. Natural attenuation occurs at pools and plumes, indicating that remediation might be possible. The aims of the study were: i) to assess the role of heterogeneity in the natural attenuation of these compounds, ii) determine degradation processes within this zone, and iii) identify dechlorinating microorganisms. For this, groundwater concentrations, redox-sensitive parameters, CSIA isotopic and DGGE molecular techniques were used. The main findings at depth of the transition zone were: (1) the important key control played by heterogeneity on natural attenuation of contaminants. (2) Heterogeneity caused the highly anoxic environment and dominant sulfate-reducing conditions, which accounts for more efficient natural attenuation. (3) Heterogeneity also explains that the transition zone constitutes an ecotone. (4) The bacteria size exclusion is governed by the pore throat threshold and determines the penetration of dechlorinating microorganisms into the finest sediments, which is relevant, since it implies the need to verify whether microorganisms proposed for bioremediation can penetrate these materials. (5) Reductive dechlorination caused the natural attenuation of contaminants in groundwater and porewater of fine sediments. In the case of carbon tetrachloride, it was an abiotic process biogenically mediated by A. suillum, a bacterium capable of penetrating the finest sediments. In the case of chloroform, it was a biotic process performed by a Clostridiales bacterium, which is unable to penetrate the finest materials. (6) Both microorganisms have potential to be biostimulated to dechlorinate contaminants in the source and the plume in the transition zone. These outcomes are particularly relevant given the longevity of DNAPL sources and have considerable environmental implications as many supply wells in industrial areas exploit aquifers contaminated by chlorinated solvents emerging from DNAPL pools accumulated on the low-conductivity layers in transition zones.


Assuntos
Água Subterrânea , Biodegradação Ambiental , Tetracloreto de Carbono , Clorofórmio , Poluentes Químicos da Água , Poços de Água
8.
Environ Sci Pollut Res Int ; 23(18): 18724-41, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27314420

RESUMO

In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).


Assuntos
Água Subterrânea/microbiologia , Tetracloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Subterrânea/análise , Halogenação , Ferro/metabolismo , Manganês/metabolismo , Oxirredução , Sulfatos/metabolismo , Tetracloroetileno/análise , Microbiologia da Água , Poluentes Químicos da Água/análise
10.
J Contam Hydrol ; 168: 25-40, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25278314

RESUMO

This work dealt with the physical and biogeochemical processes that favored the natural attenuation of chloroethene plumes of aged sources located close to influent rivers in the presence of co-contaminants, such as nitrate and sulfate. Two working hypotheses were proposed: i) Reductive dechlorination is increased in areas where the river-aquifer relationship results in the groundwater dilution of electron acceptors, the reduction potential of which exceeds that of specific chloroethenes; ii) zones where silts predominate or where textural changes occur are zones in which biodegradation preferentially takes place. A field site on a Quaternary alluvial aquifer at Torelló, Catalonia (Spain) was selected to validate these hypotheses. This aquifer is adjacent to an influent river, and its redox conditions favor reductive dechlorination. The main findings showed that the low concentrations of nitrate and sulfate due to dilution caused by the input of surface water diminish the competition for electrons between microorganisms that reduce co-contaminants and chloroethenes. Under these conditions, the most bioavailable electron acceptors were PCE and metabolites, which meant that their biodegradation was favored. This led to the possibility of devising remediation strategies based on bioenhancing natural attenuation. The artificial recharge with water that is low in nitrates and sulfates may favor dechlorinating microorganisms if the redox conditions in the mixing water are sufficiently maintained as reducing and if there are nutrients, electron donors and carbon sources necessary for these microorganisms.


Assuntos
Cloro/metabolismo , Água Subterrânea/química , Rios/química , Tetracloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Subterrânea/análise , Solo/química , Espanha
11.
J Contam Hydrol ; 144(1): 1-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23149156

RESUMO

This study seeks to improve our understanding of the conceptual model of pollutant transport and fate in cases of DNAPL contamination at sites with a complex contamination history. The study was carried out in an unconfined aquifer of alluvial fans in the Tarragona Petrochemical Complex (Spain). Two boreholes were drilled and continuous cores were recovered in order to carry out a detailed core description at centimeter scale and a comprehensive sampling of borehole cores. The biogeochemical heterogeneity at these sites is controlled by the conjunction of lithological, hydrochemical and microbiological heterogeneities. Biodegradation processes of contaminant compounds take place not only at the level of the dissolved fraction in the aquifer but also at the level of the fraction retained in the fine, less conductive materials as shown by the biodegradation haloes of parent and metabolite compounds. Sampling the low-conductivity levels also allowed us to identify compounds, e.g. BTEX, that are the remaining traces of the passage of old contaminant plumes whose sources no longer exist. This enabled us to describe past biogeochemical processes and to partially account for the processes occurring today. Transition zones, characterized by numerous textural changes, constitute ecotones whose biostimulation could be effective in promoting the acceleration of the remediation of the multiple pollution at these sites.


Assuntos
Sedimentos Geológicos , Água Subterrânea , Modelos Teóricos , Microbiologia do Solo , Solo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Tetracloreto de Carbono/análise , Clorofórmio/análise , Monitoramento Ambiental , Cloreto de Metila/análise , Espanha , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA