Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Nat Methods ; 10(1): 77-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202434

RESUMO

Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct, in the absence of proliferation and multipotent progenitor generation, or indirect, by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state, induced by brief exposure to reprogramming factors, followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells, including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Reprogramação Celular , Endotélio Vascular/citologia , Fibroblastos/citologia , Miócitos de Músculo Liso/citologia , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
3.
J Biol Chem ; 289(4): 2084-98, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311783

RESUMO

Induced pluripotent stem cells (iPSCs) maintain during the first few culture passages a set of epigenetic marks and metabolites characteristic of their somatic cell of origin, a concept defined as epigenetic donor memory. These residual somatic features are lost over time after extensive culture passaging. Therefore, epigenetic donor memory may be responsible for the higher differentiation efficiency toward the tissue of origin observed in low passage iPSCs versus high passage iPSC or iPSCs derived from a different tissue source. Remarkably, there are no studies on the relevance of microRNA (miRNA) memory following reprogramming, despite the established role of these molecules in the context of pluripotency and differentiation. Using hematopoietic progenitors cells as a model, we demonstrated that miRNAs play a central role in somatic memory retention in iPSCs. Moreover, the comparison of the miRNA expression profiles among iPSCs from different sources allowed for the detection of a set of candidate miRNAs responsible for the higher differentiation efficiency rates toward blood progenitors observed in low passage iPSCs. Combining bioinformatic predictive algorithms with biological target validation, we identified miR-155 as a key player for the in vitro differentiation of iPSC toward hematopoietic progenitors. In summary, this study reveals that during the initial passages following reprogramming, iPSCs maintained the expression of a miRNA set exclusive to the original somatic population. Hence the use of these miRNAs might hold a direct application toward our understanding of the differentiation process of iPSCs toward hematopoietic progenitor cells.


Assuntos
Diferenciação Celular , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Especificidade de Órgãos
4.
Stem Cells ; 32(11): 2923-2938, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25175072

RESUMO

Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here, we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into hematopoietic progenitor-like cells with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm-related markers. Profiling of cord blood hematopoietic progenitor cell populations identified miR-125b as a factor facilitating commitment of SOX2-generated CD34+ cells to immature hematopoietic-like progenitor cells with grafting potential. Further differentiation toward the monocytic lineage resulted in the appearance of CD14+ cells with functional phagocytic capacity. In vivo transplantation of SOX2/miR-125b-generated CD34+ cells facilitated the maturation of the engrafted cells toward CD45+ cells and ultimately the monocytic/macrophage lineage. Altogether, our results indicate that strategies combining lineage conversion and further lineage specification by in vivo or in vitro approaches could help to circumvent long-standing obstacles for the reprogramming of human cells into hematopoietic cells with clinical potential.


Assuntos
Diferenciação Celular/fisiologia , Fibroblastos/citologia , Monócitos/citologia , Células-Tronco/citologia , Animais , Antígenos CD34/metabolismo , Linhagem da Célula/fisiologia , Células Cultivadas , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos
5.
Diabetes ; 73(8): 1336-1351, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775784

RESUMO

Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human ß-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult ß-cells and is expressed to a greater extent in fetal ß-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of ß-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human ß-cells, and identify them as key components in establishing species-specific glycemic set points.


Assuntos
Transportador de Glucose Tipo 1 , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Humanos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Glucose/metabolismo , Secreção de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo
6.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38746154

RESUMO

Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, since coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.

7.
Cell Rep ; 43(8): 114640, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163202

RESUMO

Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Pâncreas , Humanos , Elementos Facilitadores Genéticos/genética , Diferenciação Celular/genética , Pâncreas/metabolismo , Pâncreas/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células-Tronco Pluripotentes/metabolismo , Sistemas CRISPR-Cas/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética
8.
Nat Genet ; 55(8): 1336-1346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488417

RESUMO

Comprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. We discovered a comprehensive set of enhancers for each of the core endoderm-specifying transcription factors. Many enhancers had strong effects mid-transition but weak effects post-transition, consistent with the nonlinear temporal responses to enhancer perturbation predicted by the modeling. Integrating three-dimensional genomic information, we were able to develop a CTCF-loop-constrained Interaction Activity model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and systematic enhancer discovery in both normal and pathological cell state transitions.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Elementos Facilitadores Genéticos/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes/genética , Cromatina/genética
9.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945628

RESUMO

Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.

10.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398096

RESUMO

The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes. They lack typical enhancer-associated histone modifications but show enriched occupancy of pluripotent transcription factors, DNA demethylation factors, and histone deacetylases. TET1 and QSER1 protect CCRs from excessive DNA methylation, while HDAC1 family members prevent premature activation. This "push and pull" feature resembles bivalent domains at developmental gene promoters but involves distinct molecular mechanisms. Our study provides new insights into pluripotency regulation and cellular plasticity in development and disease. One sentence summary: We report a class of distal regulatory regions distinct from enhancers that confer human embryonic stem cells with the competence to rapidly activate the expression of lineage-specific genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA