Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(2): e1010060, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180218

RESUMO

The increasing prevalence of insecticide resistance and the ongoing global burden of vector-borne diseases have encouraged new efforts in mosquito control. For Aedes aegypti, the most important arboviral vector, integration rates achieved in Cas9-based knock-ins so far have been rather low, highlighting the need to understand gene conversion patterns and other factors that influence homology-directed repair (HDR) events in this species. In this study, we report the effects of sequence mismatches or donor template forms on integration rates. We found that modest sequence differences between construct homology arms [DNA sequence in the donor template which resembles the region flanking the target cut] and genomic target comprising 1.2% nucleotide dissimilarity (heterology) significantly reduced integration rates. While most integrations (59-88%) from plasmid templates were the result of canonical [on target, perfect repair] HDR events, no canonical events were identified from other donor types (i.e. ssDNA, biotinylated ds/ssDNA). Sequencing of the transgene flanking region in 69 individuals with canonical integrations revealed 60% of conversion tracts to be unidirectional and extend up to 220 bp proximal to the break, though in three individuals bidirectional conversion of up to 725 bp was observed.


Assuntos
Sistemas CRISPR-Cas , Culicidae , Animais , Culicidae/genética , Reparo do DNA/genética , Genoma , Humanos , Mosquitos Vetores/genética
2.
Nat Commun ; 15(1): 729, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272895

RESUMO

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.


Assuntos
Aedes , Tecnologia de Impulso Genético , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Sistemas CRISPR-Cas/genética , Aedes/genética , RNA Guia de Sistemas CRISPR-Cas , Infecção por Zika virus/genética , Zika virus/genética
3.
Nat Commun ; 14(1): 7561, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985762

RESUMO

Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.


Assuntos
Aedes , Culex , Tecnologia de Impulso Genético , Animais , Culex/genética , Mosquitos Vetores/genética , Aedes/genética , Vetores de Doenças
4.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398284

RESUMO

Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test the first CRISPR-based homing gene drive for Culex quinquefasciatus, demonstrating the possibility of using this technology to control Culex mosquitoes. Our results show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.

5.
Sci Rep ; 11(1): 14964, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294769

RESUMO

Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods (e.g. physical/chemical) are increasingly ineffective; use of insecticides also imposes hazards to both human and ecosystem health. Advances in genome editing have allowed the development of genetic insect control methods, which are species-specific and, theoretically, highly effective. CRISPR/Cas9 is a bacteria-derived programmable gene editing tool that is functional in a range of species. We describe the first successful germline gene knock-in by homology dependent repair in C. quinquefasciatus. Using CRISPR/Cas9, we integrated an sgRNA expression cassette and marker gene encoding a fluorescent protein fluorophore (Hr5/IE1-DsRed, Cq7SK-sgRNA) into the kynurenine 3-monooxygenase (kmo) gene. We achieved a minimum transformation rate of 2.8%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed. Insertion homozygotes displayed a white eye phenotype in early-mid larvae and a recessive lethal phenotype by pupation. This work provides an efficient method for engineering C. quinquefasciatus, providing a new tool for developing genetic control tools for this vector.


Assuntos
Culex/crescimento & desenvolvimento , Técnicas de Introdução de Genes/veterinária , Quinurenina 3-Mono-Oxigenase/genética , RNA Polimerase III/genética , Animais , Sistemas CRISPR-Cas , Culex/genética , Culex/virologia , Reparo do DNA , Vetores de Doenças , Feminino , Genes Recessivos , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas de Insetos/genética , Masculino , Controle Biológico de Vetores , Regiões Promotoras Genéticas , Vírus do Nilo Ocidental/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA