RESUMO
Single cell network profiling (SCNP) is a multi-parameter flow cytometry technique for simultaneous interrogation of intracellular signalling pathways. Diagnostic paediatric acute myeloid leukaemia (AML) bone marrow samples were used to develop a classifier for response to induction therapy in 53 samples and validated in an independent set of 68 samples. The area under the curve of a receiver operating characteristic curve (AUC(ROC)) was calculated to be 0·85 in the training set and after exclusion of induction deaths, the AUC(ROC) of the classifier was 0·70 (P = 0·02) and 0·67 (P = 0·04) in the validation set when induction deaths (intent to treat) were included. The highest predictive accuracy was noted in the cytogenetic intermediate risk patients (AUC(ROC) 0·88, P = 0·002), a subgroup that lacks prognostic/predictive biomarkers for induction response. Only white blood cell count and cytogenetic risk were associated with response to induction therapy in the validation set. After controlling for these variables, the SCNP classifier score was associated with complete remission (P = 0·017), indicating that the classifier provides information independent of other clinical variables that were jointly associated with response. This is the first validation of an SCNP classifier to predict response to induction chemotherapy. Herein we demonstrate the usefulness of quantitative SCNP under modulated conditions to provide independent information on AML disease biology and induction response.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Adolescente , Criança , Pré-Escolar , Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Feminino , Citometria de Fluxo/métodos , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Terapia Neoadjuvante , Prognóstico , Estudos Prospectivos , Indução de Remissão , Estudos Retrospectivos , Análise de Célula Única/métodos , Tioguanina/administração & dosagem , Resultado do TratamentoAssuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/diagnóstico , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Receptores de Antígenos de Linfócitos B/genética , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Progressão da Doença , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Mutação , Fosfoproteínas/imunologia , Fosforilação , Prognóstico , Fatores de Processamento de RNA/imunologia , Receptor Notch1/genética , Receptor Notch1/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais , Análise de Sobrevida , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologiaRESUMO
Single-cell network profiling (SCNP) data generated from multi-parametric flow cytometry analysis of bone marrow (BM) and peripheral blood (PB) samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP) for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]). SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57) and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53). Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP. Five DXSCNP classifiers were developed on the SWOG Training set and tested for prediction accuracy in an independent BM verification sample set (N = 24) from ECOG AML trials to select the final classifier, which was a significant predictor of CR/CRi (area under the receiver operating characteristic curve AUROC = 0.76, p = 0.01). The selected classifier was then validated in the SWOG BM Validation Set (AUROC = 0.72, p = 0.02). Importantly, a classifier developed using only clinical and molecular inputs from the same sample set (DXCLINICAL2) lacked prediction accuracy: AUROC = 0.61 (p = 0.18) in the BM Verification Set and 0.53 (p = 0.38) in the BM Validation Set. Notably, the DXSCNP classifier was still significant in predicting response in the BM Validation Analysis Set after controlling for DXCLINICAL2 (p = 0.03), showing that DXSCNP provides information that is independent from that provided by currently used prognostic markers. Taken together, these data show that the proteomic classifier may provide prognostic information relevant to treatment planning beyond genetic mutations and traditional prognostic factors in elderly AML.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Sanguíneas/metabolismo , Células da Medula Óssea/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Células Sanguíneas/citologia , Células da Medula Óssea/citologia , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Indução de Remissão , Transdução de Sinais , Análise de Célula ÚnicaRESUMO
Clinical diagnostic assays, may be classified as quantitative, quasi-quantitative or qualitative. The assay's description should state what the assay needs to accomplish (intended use or purpose) and what it is not intended to achieve. The type(s) of samples (whole blood, peripheral blood mononuclear cells (PBMC), bone marrow, bone marrow mononuclear cells (BMMC), tissue, fine needle aspirate, fluid, etc.), instrument platform for use and anticoagulant restrictions should be fully validated for stability requirements and specified. When applicable, assay sensitivity and specificity should be fully validated and reported; these performance criteria will dictate the number and complexity of specimen samples required for validation. Assay processing and staining conditions (lyse/wash/fix/perm, stain pre or post, time and temperature, sample stability, etc.) should be described in detail and fully validated.