Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009532

RESUMO

Mixed (FAPbI3)0.92(MAPbBr3)0.08 perovskite thin films exhibit strong nonlinear optical responses, rendering them promising candidates for applications in photonics and optical communications. In this work, we present a systematic study on the ultrafast third-order nonlinear optical processes in mixed perovskite nanocrystals (NCs) by exploring the generation of third harmonic radiation and giant two-photon absorption-based photoluminescence (PL) when excited by femtosecond laser pulses of a 1030 nm central wavelength. A comparative analysis of the coherent third harmonic generation in the thin-film-containing perovskite nanocrystals has shown a 40× enhancement of the third harmonic signal compared to the signal generated in the pure quartz substrate. The cubic dependence of the third-nonlinear optical response of the (FAPbI3)0.92(MAPbBr3)0.08 perovskites on the intensity of the driving radiation was identified using broadband 38 femtosecond driving pulses. The positive nonlinear refractive index (γ = +1.4 × 10-12 cm2·W-1) is found to play an important role in improving the phase-matching conditions of the interacting pulses by generating a strong third order harmonic. The giant two-photon absorption (TPA)-assisted PL peak was monitored and a blue shift of the PL was obtained in the higher intensity range of the laser pulses, with the absorption coefficient ß estimated to be~+7.0 cm·MW-1 at a 1030 nm laser wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA