Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 81: 212-222, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569204

RESUMO

Romosozumab is a humanized immunoglobulin G2 monoclonal antibody that binds and blocks the action of sclerostin, a protein secreted by the osteocyte and an extracellular inhibitor of canonical Wnt signaling. Blockade of sclerostin binding to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) allows Wnt ligands to activate canonical Wnt signaling in bone, increasing bone formation and decreasing bone resorption, making sclerostin an attractive target for osteoporosis therapy. Because romosozumab is a bone-forming agent and an activator of canonical Wnt signaling, questions have arisen regarding a potential carcinogenic risk. Weight-of-evidence factors used in the assessment of human carcinogenic risk of romosozumab included features of canonical Wnt signaling, expression pattern of sclerostin, phenotype of loss-of-function mutations in humans and mice, mode and mechanism of action of romosozumab, and findings from romosozumab chronic toxicity studies in rats and monkeys. Although the weight-of-evidence factors supported that romosozumab would pose a low carcinogenic risk to humans, the carcinogenic potential of romosozumab was assessed in a rat lifetime study. There were no romosozumab-related effects on tumor incidence in rats. The findings of the lifetime study and the weight-of-evidence factors collectively indicate that romosozumab administration would not pose a carcinogenic risk to humans.


Assuntos
Anticorpos Monoclonais/toxicidade , Neoplasias/induzido quimicamente , Animais , Anticorpos Monoclonais/administração & dosagem , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Humanos , Camundongos , Ratos , Medição de Risco
2.
Int J Toxicol ; 35(3): 294-308, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26941242

RESUMO

Etelcalcetide is a novel d-amino acid peptide that functions as an allosteric activator of the calcium-sensing receptor and is being developed as an intravenous calcimimetic for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on hemodialysis. To support clinical development and marketing authorization, a comprehensive nonclinical safety package was generated. Primary adverse effects included hypocalcemia, tremoring, and convulsions. Other adverse effects were considered sequelae of stress associated with hypocalcemia. Cardiovascular safety evaluations in the dog revealed an anticipated prolongation of the corrected QT interval that was related to reductions in serum calcium. Etelcalcetide did not affect the human ether-a-go-go gene ion channel current. Etelcalcetide was mutagenic in some strains of Salmonella, however, based on the negative results in 2 in vitro and 2 in vivo mammalian genotoxicity assays, including a 28-day Muta mouse study, etelcalcetide is considered nongenotoxic. Further support for a lack of genotoxicity was provided due to the fact that etelcalcetide was not carcinogenic in a 6-month transgenic rasH2 mouse model or a 2-year study in rats. There were no effects on fertility, embryo-fetal development, and prenatal and postnatal development. All of the adverse effects observed in both rat and dog were considered directly or secondarily related to the pharmacologic activity of etelcalcetide and the expected sequelae associated with dose-related reductions in serum calcium due to suppression of parathyroid hormone secretion. These nonclinical data indicate no safety signal of concern for human risk beyond that associated with hypocalcemia and associated QT prolongation.


Assuntos
Peptídeos/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/sangue , Cães , Canal de Potássio ERG1/fisiologia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hiperparatireoidismo Secundário/tratamento farmacológico , Hipocalcemia/induzido quimicamente , Masculino , Camundongos Transgênicos , Testes de Mutagenicidade , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Coelhos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Convulsões/induzido quimicamente , Tremor/induzido quimicamente
3.
Toxicol Pathol ; 42(3): 510-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23674390

RESUMO

We conducted a retrospective analysis of publicly available preclinical toxicology studies with erythropoiesis-stimulating agents (ESAs) to examine common adverse events in rats, Beagle dogs, and cynomolgus monkeys. Mortality and/or thrombotic events were reported sporadically in a subset of studies and attributed to the high hematocrit (HCT) achieved in the animals. However, similarly high HCT was achieved in both high-dose and low-dose groups, but there were no reported adverse events in the low-dose group suggesting HCT was not the sole contributing factor leading to toxicity. Our analysis indicated that increased dose, dose frequency, and dosing duration in addition to high HCT contributed to mortality and thrombosis. To further evaluate this relationship, the incidence of toxicities was compared in rats administered an experimental hyperglycosylated analog of recombinant human erythropoietin (AMG 114) at varying dosing schedules in 1-month toxicity studies. The incidence of mortality and thrombotic events increased in higher dose groups and when dosed more frequently, despite a similarly high HCT in all animals. The results from the investigative study and retrospective analysis demonstrate that ESA-related toxicities in preclinical species are associated with dose level, dose frequency, and dosing duration, and not solely dependent upon a high HCT.


Assuntos
Hematínicos , Hematócrito , Trombose/induzido quimicamente , Animais , Pesquisa Biomédica , Cães , Eritropoese/efeitos dos fármacos , Eritropoetina/administração & dosagem , Eritropoetina/efeitos adversos , Eritropoetina/toxicidade , Doenças das Valvas Cardíacas , Hematínicos/administração & dosagem , Hematínicos/efeitos adversos , Hematínicos/toxicidade , Humanos , Macaca fascicularis , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/toxicidade , Estudos Retrospectivos , Neoplasias Gástricas
4.
Toxicol Pathol ; 42(3): 524-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23674391

RESUMO

We recently reported results that erythropoiesis-stimulating agent (ESA)-related thrombotic toxicities in preclinical species were not solely dependent on a high hematocrit (HCT) but also associated with increased ESA dose level, dose frequency, and dosing duration. In this article, we conclude that sequelae of an increased magnitude of ESA-stimulated erythropoiesis potentially contributed to thrombosis in the highest ESA dose groups. The results were obtained from two investigative studies we conducted in Sprague-Dawley rats administered a low (no thrombotic toxicities) or high (with thrombotic toxicities) dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114), 3 times weekly for up to 9 days or for 1 month. Despite similarly increased HCT at both dose levels, animals in the high-dose group had an increased magnitude of erythropoiesis measured by spleen weights, splenic erythropoiesis, and circulating reticulocytes. Resulting prothrombotic risk factors identified predominantly or uniquely in the high-dose group were higher numbers of immature reticulocytes and nucleated red blood cells in circulation, severe functional iron deficiency, and increased intravascular destruction of iron-deficient reticulocyte/red blood cells. No thrombotic events were detected in rats dosed up to 9 days suggesting a sustained high HCT is a requisite cofactor for development of ESA-related thrombotic toxicities.


Assuntos
Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Eritropoetina/toxicidade , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/toxicidade , Análise de Variância , Animais , Plaquetas , Eritrócitos , Eritropoetina/administração & dosagem , Hematócrito , Humanos , Ferro/sangue , Ferro/metabolismo , Masculino , Policitemia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Reticulócitos
5.
Toxicol Pathol ; 42(3): 540-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23674392

RESUMO

We previously reported an increased incidence of thrombotic toxicities in Sprague-Dawley rats administered the highest dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114) for 1 month as not solely dependent on high hematocrit (HCT). Thereafter, we identified increased erythropoiesis as a prothrombotic risk factor increased in the AMG 114 high-dose group with thrombotic toxicities, compared to a low-dose group with no toxicities but similar HCT. Here, we identified pleiotropic cytokines as prothrombotic factors associated with AMG 114 dose level. Before a high HCT was achieved, rats in the AMG 114 high, but not the low-dose group, had imbalanced hemostasis (increased von Willebrand factor and prothrombin time, decreased antithrombin III) coexistent with cytokines implicated in thrombosis: monocyte chemotactic protein 1 (MCP-1), MCP-3, tissue inhibitor of metalloproteinases 1, macrophage inhibitory protein-2, oncostatin M, T-cell-specific protein, stem cell factor, vascular endothelial growth factor, and interleukin-11. While no unique pathway to erythropoiesis stimulating agent-related thrombosis was identified, cytokines associated with increased erythropoiesis contributed to a prothrombotic intravascular environment in the AMG 114 high-dose group, but not in lower dose groups with a similar high HCT.


Assuntos
Citocinas/sangue , Citocinas/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Eritropoetina/química , Hematócrito , Humanos , Masculino , Policitemia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Reticulócitos , Trombose
6.
Toxicol Pathol ; 37(4): 553-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19458391

RESUMO

Recent international summits of the International Federation of Societies of Toxicologic Pathologists have debated the desirability and potential means by which the proficiency of an individual toxicologic pathologist might be recognized and communicated throughout the world. The present article describes the advantages and disadvantages of implementing such a global recognition system by any means and provides a proposal whereby recognition might be accorded via rigorous credential review of a practitioner's education and experience.


Assuntos
Acreditação , Cooperação Internacional , Patologia/normas , Competência Profissional , Toxicologia/normas , Acreditação/normas , Humanos , Patologia/educação , Sociedades Científicas , Toxicologia/educação
7.
J Toxicol Pathol ; 22(2): 143-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22271988

RESUMO

Recent international summits of the International Federation of Societies of Toxicologic Pathologists (IFSTP) have debated the desirability and potential means by which the proficiency of an individual toxicologic pathologist might be recognized and communicated throughout the world. The present document describes the advantages and disadvantages of implementing such a global recognition system by any means, and provides a proposal whereby recognition might be accorded via rigorous credential review of a practitioner's education and experience.

8.
Mol Cancer Ther ; 7(3): 590-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18347145

RESUMO

Both the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) pathways are associated with intestinal cancer, and therapeutic approaches targeting either EGF receptor (EGFR) or VEGF receptor (VEGFR) signaling have recently been approved for patients with advanced colorectal cancer. The Apc(Min/+) mouse is a well-characterized in vivo model of intestinal tumorigenesis, and animals with this genetic mutation develop macroscopically detectable adenomas from approximately 6 weeks of age. Previous work in the Apc(Min/+) mouse has shown that therapeutic approaches targeting either VEGFR or EGFR signaling affect predominantly the size or number of adenomas, respectively. In this study, we have assessed the effect of inhibiting both these key pathways simultaneously using ZD6474 (Vandetanib, ZACTIMA), a selective inhibitor of VEGFR and EGFR tyrosine kinases. To assess the effects of ZD6474 on early- and later-stage disease, treatment was initiated in 6- and 10-week-old Apc(Min/+) mice for 28 days. ZD6474 markedly reduced both the number and the size of polyps when administered at either an early or a later stage of polyp development. This reduction in both adenoma number and size resulted in a total reduction in tumor burden in the small intestine of nearly 75% in both studies (P < 0.01). The current data build on the concept that EGFR-dependent tumor cell proliferation and VEGF/VEGFR2-dependent angiogenesis and survival are distinct key mechanisms in polyp development. Pharmacologic inhibition of both signaling pathways has significant antitumor effects at both early and late stages of polyp development. Therefore, targeting both VEGFR- and EGFR-dependent signaling may be a beneficial strategy in early intestinal cancer.


Assuntos
Adenoma/patologia , Receptores ErbB/metabolismo , Genes APC , Neoplasias Intestinais/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Adenoma/genética , Adenoma/metabolismo , Animais , Feminino , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Toxicol Pathol ; 36(5): 753-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18648095

RESUMO

Although there are a few national schemes for accreditation/certification of toxicologic pathologists (e.g., in Japan and the United Kingdom), a global recognition system for bench toxicologic pathologists is missing, as are universal standards defining their core competencies. This paper summarizes basic means regarding how proficiency in toxicologic pathology is acquired, provides an overview over examinations of interest to toxicologic pathologists, and emphasizes the value of practical experience in the field. The paper then discusses basic approaches to evaluate the proficiency of toxicologic pathologists and examines potential means to recognize qualified toxicologic pathologists. With progressive globalization, it is important that the toxicologic pathology community deepens the discussion regarding a global recognition mechanism for their discipline.


Assuntos
Competência Clínica , Cooperação Internacional , Patologia/normas , Toxicologia/normas , Acreditação , Animais , Certificação , Humanos , Patologia/educação , Sociedades Científicas , Toxicologia/educação
10.
Exp Toxicol Pathol ; 60(1): 1-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424010

RESUMO

While there are a few national schemes for accreditation/certification of toxicologic pathologists (e.g. in Japan and UK), a global recognition system for bench toxicologic pathologists is missing, as are universal standards defining their core competencies. This paper summarizes the basic means, how proficiency in toxicologic pathology is acquired, provides an overview over examinations of interest to toxicologic pathologists and emphasizes the value of practical experience in the field. The paper then discusses basic approaches to evaluate the proficiency of toxicologic pathologists and examines potential means to recognize qualified toxicologic pathologists. With progressive globalization it is important that the toxicologic pathology community intensifies the discussion regarding a global recognition of their discipline and seeks to agree on the way forward.


Assuntos
Competência Clínica , Cooperação Internacional , Patologia/normas , Toxicologia/normas , Acreditação , Animais , Certificação , Humanos , Patologia/educação , Sociedades Científicas , Toxicologia/educação
11.
Bone Rep ; 8: 90-94, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955626

RESUMO

Sclerostin antibody (Scl-Ab) stimulates bone formation, which with long-term treatment, attenuates over time. The cellular and molecular mechanisms responsible for the attenuation of bone formation are not well understood, but in aged ovariectomized (OVX) rats, the reduction in vertebral cancellous bone formation is preceded by a reduction in osteoprogenitor (OP) number and significant induction of signaling pathways known to suppress mitogenesis and cell cycle progression in the osteocyte (OCy) (Taylor et al., 2016). To determine if the reduction in OP number is associated with a decrease in proliferation, aged OVX rats were administered vehicle or Scl-Ab for 9 or 29 days and implanted with continuous-delivery 5-bromo-2'-deoxyuridine (BrdU) mini-osmotic pumps 5 days prior to necropsy. The total number of BrdU-labeled osteoblasts (OB) was quantified in vertebral cancellous bone to indirectly assess the effects of Scl-Ab treatment on OP proliferation at the time of activation of modeling-based bone formation at day 9 and at the time of maximal mineralizing surface, initial decrease in OP number, and transcriptional changes in the OCy at day 29. Compared with vehicle, Scl-Ab resulted in an increase in the total number of BrdU-positive OB (+260%) at day 9 that decreased with continued treatment (+50%) at day 29. These differences in proliferation occurred at time points when the increase in total OB number was significant and similar in magnitude. These findings suggest that reduced OP proliferation contributes to the decrease in OP numbers, an effect that would limit the OB pool and contribute to the attenuation of bone formation that occurs with long-term Scl-Ab treatment.

12.
Bone Rep ; 8: 95-103, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955627

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) results in stimulation of bone formation on cancellous (Cn), endocortical (Ec), and periosteal (Ps) surfaces in rodents and non-human primates. With long-term dosing of Scl-Ab, the increase in bone formation is not sustained, attenuating first on Cn surfaces and later on Ec and Ps surfaces. In Cn bone, the attenuation in bone formation (self-regulation) is associated with transcriptional changes in the osteocyte (OCy) that would limit mitogenesis and are sustained with continued dosing. The expression changes in Cn OCy occur coincident with a decrease in osteoprogenitor (OP) numbers that may directly or indirectly be a consequence of the transcriptional changes in the OCy to limit OP proliferation. To characterize the Scl-Ab-mediated changes in cortical (Ct) bone and compare these changes to Cn bone, densitometric, histomorphometric, and transcriptional analyses were performed on femur diaphyses from aged ovariectomized rats. Animals were administered 50 mg/kg/wk of Scl-Ab or vehicle for up to 6 months (183 days), followed by a treatment-free period (up to 126 days). Scl-Ab increased Ct mass and area through day 183, which declined slightly when treatment was discontinued. Ps and Ec bone formation was sustained through the dosing on both Ct surfaces, with evidence of a decline in bone formation only at day 183 on the Ec surface. This is in contrast to Cn bone, where reduced bone formation was observed after day 29. TaqMan analysis of 60 genes with functional roles in the bone using mRNA isolated from laser capture micro-dissection samples enriched for Ec osteoblasts and Ct OCy suggest a pattern of gene expression in Ct bone that differed from Cn, especially in the OCy, and that corresponded to observed differences in the timing of phenotypic changes. Notable with Scl-Ab treatment was a "transcriptional switch" in Ct OCy at day 183, coincident with the initial decline in bone formation on the endocortex. A consistent sustained increase of expression for most genes in response to Scl-Ab was observed from day 8 through day 85 at the times of maximal bone formation on both Ct surfaces; however, at day 183, this increase was reversed, with expression of these genes generally returning to control values or decreasing compared to vehicle. Genes exhibiting this pattern included Wnt inhibitors Sost and Dkk1, though both had been up-regulated until the end of dosing in Cn OCy. Changes in cell cycle genes such as Cdkn1a and Ndrg1 in Ct OCy suggested up-regulation of p53 signaling, as observed in Cn OCy; however, unlike in Cn bone, p53 signaling was not associated with decreased bone formation and was absent at day 183, when bone formation began to decline on the Ec surface. These data demonstrate involvement of similar molecular pathways in Ct and Cn bone in response to Scl-Ab but with a different temporal relationship to bone formation and suggest that the specific mechanism underlying self-regulation of Scl-Ab-induced bone formation may be different between Cn and Ct bone.

13.
J Bone Miner Res ; 32(4): 788-801, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27865001

RESUMO

Romosozumab (Romo), a humanized sclerostin antibody, is a bone-forming agent under development for treatment of osteoporosis. To examine the effects of Romo on bone quality, mature cynomolgus monkeys (cynos) were treated 4 months post- ovariectomy (OVX) with vehicle, 3 mg/kg, or 30 mg/kg Romo for 12 months, or with 30 mg/kg Romo for 6 months followed by vehicle for 6 months (30/0). Serum bone formation markers were increased by Romo during the first 6 months, corresponding to increased cancellous, endocortical, and periosteal bone formation in rib and iliac biopsies at months 3 and 6. Dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) was increased by 14% to 26% at the lumbar spine and proximal femur at month 12, corresponding to significant increases in bone strength at 3 and 30 mg/kg in lumbar vertebral bodies and cancellous cores, and at 30 mg/kg in the femur diaphysis and neck. Bone mass remained positively correlated with strength at these sites, with no changes in calculated material properties at cortical sites. These bone-quality measures were also maintained in the 30/0 group, despite a gradual loss of accrued bone mass. Normal bone mineralization was confirmed by histomorphometry and ash analyses. At the radial diaphysis, a transient, reversible 2% reduction in cortical BMD was observed with Romo at month 6, despite relative improvements in bone mineral content (BMC). High-resolution pQCT confirmed this decline in cortical BMD at the radial diaphysis and metaphysis in a second set of OVX cynos administered 3 mg/kg Romo for 6 months. Radial diaphyseal strength was maintained and metaphyseal strength improved with Romo as estimated by finite element modeling. Decreased radial cortical BMD was a consequence of increased intracortical remodeling, with no increase in cortical porosity. Romo resulted in marked improvements in bone mass, architecture, and bone strength, while maintaining bone quality in OVX cynos, supporting its bone efficacy and safety profile. © 2016 American Society for Bone and Mineral Research.


Assuntos
Absorciometria de Fóton , Anticorpos Monoclonais/farmacologia , Densidade Óssea/efeitos dos fármacos , Colo do Fêmur , Ovariectomia , Rádio (Anatomia) , Animais , Diáfises/diagnóstico por imagem , Diáfises/metabolismo , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/metabolismo , Macaca fascicularis , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/metabolismo
14.
Bone ; 84: 148-159, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721737

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP). At 50mg/kg/wk, bone volume (BV/total volume [TV]) increased through d183 and declined during the TFP. Bone formation rate (BFR/bone surface [BS]) and total OB number increased through d29, then progressively declined, coincident with a decrease in total osteoprogenitor (OP) numbers from d29 through d183. Analysis of differentially expressed genes (DEGs) from microarray analysis of mRNA isolated from laser capture microdissection samples enriched for OB, lining cells, and osteocytes (OCy) revealed modules of genes that correlated with BFR/BS, BV/TV, and osteoblastic surface (Ob.S)/BS. Expression change of canonical Wnt target genes was similar in all three cell types at d8, including upregulation of Twist1 and Wisp1. At d29, the pattern of Wnt target gene expression changed in the OCy, with Twist1 returning to VEH level, sustained upregulation of Wisp1, and upregulation of several other Wnt targets that continued into the TFP. Predicted activation of pathways recognized to integrate with and regulate canonical Wnt signaling were also activated at d29 in the OCy. The most significantly affected pathways represented transcription factor signaling known to inhibit cell cycle progression (notably p53) and mitogenesis (notably c-Myc). These changes occurred at the time of peak BFR/BS and continued as BFR/BS declined during treatment, then trended toward VEH level in the TFP. Concurrent with this transcriptional switch was a reduction in OP numbers, an effect that would ultimately limit bone formation. This study confirms that the initial transcriptional response in response to Scl-Ab is activation of canonical Wnt signaling and the data demonstrate that there is induction of additional regulatory pathways in OCy with long-term treatment. The interactions between Wnt and p53/c-Myc signaling may be key in limiting OP populations, thus contributing to self-regulation of bone formation with continued Scl-Ab administration.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Linhagem da Célula/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Ovariectomia , Transcrição Gênica/efeitos dos fármacos , Animais , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
15.
J Bone Miner Res ; 30(8): 1457-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25678055

RESUMO

Sclerostin antibody (Scl-Ab) increases bone formation through a process dependent on the activation of canonical Wnt signaling, although the specific signaling in the osteoblast lineage in vivo is largely unknown. To gain insight into the signaling pathways acutely modulated by Scl-Ab, the transcriptional response of subpopulations of the osteoblast lineage was assessed by TaqMan and microarray analyses of mRNA isolated from laser capture microdissection (LCM)-enriched samples from the vertebrae of ovariectomized rats during the first week after Scl-Ab administration. Briefly, 6-month-old Sprague-Dawley rats were ovariectomized and, after 2 months, received a single dose of vehicle (VEH) or 100 mg/kg Scl-Ab (n = 20/group). Lumbar vertebrae were collected at 6, 24, 72, and 168 hours postdose and cryosectioned for LCM. Osteocytes were captured from bone matrix, and osteoblasts and lining cells were captured from bone surfaces based on fluorochrome labeling. mRNA was isolated, amplified, and profiled by TaqMan and microarray. Expression analysis revealed that Scl-Ab caused strikingly similar transcriptional profiles across all three cell types. Only 13 known canonical Wnt target genes, the majority with known functions in bone, showed a significant change in expression by microarray in response to Scl-Ab, with Wisp1 and Twist1 being the most responsive. Coincident with increased expression of Wnt target genes was the upregulation of numerous extracellular matrix (ECM) genes. The acute and progressive upregulation of ECM genes in lining cells supports their activation into matrix-producing osteoblasts, consistent with modeling-based bone formation. A similar transcriptional profile in osteocytes may indicate that Scl-Ab stimulates perilacunar/pericanalicular matrix deposition. Pathway analyses indicated that Scl-Ab regulated a limited number of genes related to cell cycle arrest and B-cell development. These data describe the acute downstream signaling in response to Scl-Ab in vivo and demonstrate selected canonical Wnt target gene activation associated with increased bone formation in all mature osteoblast subpopulations.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Vértebras Lombares/metabolismo , Osteoblastos/metabolismo , Transcrição Gênica , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Lasers , Vértebras Lombares/patologia , Osteoblastos/patologia , Osteogênese , Ratos , Ratos Sprague-Dawley
16.
Bone ; 81: 380-391, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261096

RESUMO

Sclerostin antibody (Scl-Ab) and parathyroid hormone (PTH) are bone-forming agents that have different modes of action on bone, although a study directly comparing their effects has not been conducted. The present study investigated the comparative quantitative effects of these two bone-forming agents over time on bone at the organ, tissue, and cellular level; specifically, at the level of the osteoblast (Ob) lineage in adolescent male and female rats. Briefly, eight-week old male and female Sprague-Dawley rats were administered either vehicle, Scl-Ab (3 or 50mg/kg/week subcutaneously), or human PTH (1-34) (75 µg/kg/day subcutaneously) for 4 or 26 weeks. The 50mg/kg Scl-Ab and the PTH dose were those used in the respective rat lifetime pharmacology studies. Using robust stereological methods, we compared the effects of these agents specifically at the level of the Ob lineage in vertebrae from female rats. Using RUNX2 or nestin immunostaining, location, and morphology, the total number of osteoprogenitor subpopulations, Ob, and lining cells were estimated using the fractionator or proportionator estimators. Density estimates were also calculated referent to total bone surface, total Ob surface, or total marrow volume. Scl-Ab generally effected greater increases in cancellous and cortical bone mass than PTH, correlating with higher bone formation rates (BFR) at 4 weeks in the spine and mid-femur without corresponding increases in bone resorption indices. The increases in vertebral BFR/BS at 4 weeks attenuated with continued treatment to a greater extent with Scl-Ab than with PTH. At 4 weeks, both Scl-Ab and PTH effected equivalent increases in total Ob number (Ob.N). Ob density on the formative surfaces (Ob.N/Ob.S) remained similar across groups while mineral apposition rate (MAR) was significantly higher with Scl-Ab at week 4, reflecting an increase in individual Ob vigor relative to vehicle and PTH. After 26 weeks, Scl-Ab maintained BFR/BS with fewer Ob and lower Ob.N/Ob.S by increasing the Ob footprint (bone surface area occupied by an Ob) and increasing MAR, compared with PTH. The lower Ob.N and Ob.N/Ob.S with Scl-Ab at 26 weeks were associated with decreased osteoprogenitor numbers compared with both vehicle and PTH, an effect not evident at week 4. Osteoprogenitor numbers were generally positively correlated with Ob.N across groups and timepoints, suggesting dynamic coordination between the progenitor and Ob populations. The time-dependent reductions in subpopulations of the Ob lineage with Scl-Ab may be integral to the greater attenuation or self-regulation of bone formation observed at the vertebra, as PTH required more Ob at the formative site with correlative increased numbers of progenitors compared with Scl-Ab indicating potentially greater stimulus for progenitor pool proliferation or differentiation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteínas Morfogenéticas Ósseas/imunologia , Osso e Ossos/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/administração & dosagem , Animais , Anticorpos Monoclonais/química , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feminino , Fêmur/efeitos dos fármacos , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/química , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Tíbia/efeitos dos fármacos , Fatores de Tempo
18.
Reprod Toxicol ; 48: 132-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24859271

RESUMO

To assess the potential for male-mediated drug transfer to their female partner and/or developing conceptus, vaginal uptake of a monoclonal antibody (mAb) biotherapeutic was assessed in cynomolgus monkeys. A human IgG2 mAb (IgG2X; bound human and cynomolgus monkey neonatal Fc-receptor, FcRn, with similar high affinity) was administered intravaginally (IvG; 100mg/dose) to 5 pregnant cynomolgus monkeys biweekly from gestation day (gd) 21 to gd133. In all maternal samples collected before gd119, IgG2X plasma concentrations were below the limit of quantification (BLQ; <25ng/mL). After dosing on gd119 and 133, maternal IgG2X plasma concentrations remained BLQ in 3/5 monkeys and were very low in 2/5 (up to 116ng/mL; ∼0.01% of the IvG dose). IgG2X was BLQ in all fetal plasma samples. These data indicate that male-mediated mAb drug transfer via seminal fluid does not present a health risk to the female partner and is not bioavailable to the developing conceptus.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Sangue Fetal/metabolismo , Imunoglobulina G/administração & dosagem , Imunoglobulina G/farmacologia , Administração Intravaginal , Animais , Anticorpos Monoclonais/sangue , Feminino , Imunoglobulina G/sangue , Macaca fascicularis , Masculino , Exposição Materna , Troca Materno-Fetal , Gravidez , Sêmen/metabolismo
19.
Bone ; 64: 314-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727159

RESUMO

RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Osteoclastos/patologia , Osteopetrose/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Anticorpos Monoclonais Humanizados/imunologia , Remodelação Óssea , Denosumab , Feminino , Macaca fascicularis , Osteopetrose/diagnóstico por imagem , Fenótipo , Gravidez , Tomografia Computadorizada por Raios X , Erupção Dentária
20.
Reprod Toxicol ; 42: 27-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23886817

RESUMO

Denosumab is a monoclonal antibody that inhibits bone resorption by targeting RANKL, an essential mediator of osteoclast formation, function, and survival. Reproductive toxicity of denosumab was assessed in cynomolgus monkeys in an embryofetal development study (dosing GD20-50) and a pre-postnatal toxicity study (dosing GD20-parturition). In the embryofetal toxicity study, denosumab did not elicit maternal toxicity, fetal harm or teratogenicity. In the pre-postnatal toxicity study, there were increased stillbirths, and one maternal death due to dystocia. There was no effect on maternal mammary gland histomorphology, lactation, or fetal growth. In infants exposed in utero, there was increased postnatal mortality, decreased body weight gain, and decreased growth/development. Denosumab-related effects in infants were present in bones and lymph nodes. There was full recovery at 6 months of age from most bone-related changes observed earlier postpartum. The effects observed in mothers and infants were consistent with the pharmacological action of denosumab.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Conservadores da Densidade Óssea/toxicidade , Animais , Denosumab , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Macaca fascicularis , Masculino , Troca Materno-Fetal , Gravidez , Reprodução/efeitos dos fármacos , Natimorto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA