Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Technol ; 52(10): 5902-5910, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29699395

RESUMO

Iodate (IO3-) incorporation in calcite (CaCO3) is a potential sequestration pathway for environmental remediation of radioiodine-contaminated sites (e.g., Hanford Site, WA), but the incorporation mechanisms have not been fully elucidated. Ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure spectroscopy (EXAFS) were combined to determine the local coordination environment of iodate in calcite, the associated charge compensation schemes (CCS), and any tendency for surface segregation. IO3- substituted for CO32- and charge compensation was achieved by substitution of Ca2+ by Na+ or H+. CCS that minimized the I-Na/H distance or placed IO3- at the surface were predicted by density functional theory to be energetically favored, with the exception of HIO3, which was found to be metastable relative to the formation of HCO3-. Iodine K-edge EXAFS spectra were calculated from AIMD trajectories and used to fit the experimental spectrum. The best-fit combination consisted of a significant proportion of surface-segregated IO3- and charge compensation was predominantly by H+. Important implications are therefore that pH should strongly affect the extent of IO3- incorporation and that IO3- accumulated at the surface of CaCO3 particles may undergo mobilization under conditions that promote calcite dissolution. These impacts need to be considered in calcite-based iodate remediation strategies.


Assuntos
Iodatos , Iodo , Animais , Carbonato de Cálcio , Iodetos , Radioisótopos do Iodo , Suínos
2.
Langmuir ; 32(24): 6194-209, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27243116

RESUMO

Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na(+)-montmorillonite (001), Ca(2+)-montmorillonite (001), goethite (100), and Na(+)-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, 4-fold ß-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvated structure without these mineral surfaces present. Over the Na(+)-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 ß-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.

3.
Environ Sci Technol ; 49(13): 8202-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26039150

RESUMO

The leakage of CO2 and the concomitant brine from deep storage reservoirs to overlying groundwater aquifers is considered one of the major potential risks associated with geologic CO2 sequestration (GCS). In this work both batch and column experiments were conducted to determine the fate of trace metals in groundwater in the scenarios of CO2 and metal-contaminated brine leakage. The sediments for this study were from an unconsolidated sand and gravel aquifer in Kansas, containing 0-4 wt % carbonates. Cd (114 µg/L) and As (40 µg/L) were spiked into the reaction system to represent potential contaminants from the reservoir brine. Through this research we demonstrated that Cd and As were adsorbed on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. Cd concentrations in the effluent were below the Cd MCL, even for sediments without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent were also significantly lower than the influent concentration, suggesting that the sediments tested have the capacity to mitigate the coupled adverse effects of CO2 leakage and brine intrusion. The mitigation capacity of sediment is a function of its geochemical properties (e.g., the presence of carbonate minerals, adsorbed As, and phosphate).


Assuntos
Dióxido de Carbono/análise , Sedimentos Geológicos/química , Água Subterrânea/química , Poluentes Químicos da Água/análise , Adsorção , Elementos Químicos , Meio Ambiente , Concentração de Íons de Hidrogênio , Kansas , Qualidade da Água
4.
Environ Sci Technol ; 48(18): 10760-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25144300

RESUMO

We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 µM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.


Assuntos
Cromo/química , Manganês/química , Catálise , Precipitação Química , Meio Ambiente , Oxirredução , Soluções , Suspensões , Fatores de Tempo , Espectroscopia por Absorção de Raios X , Difração de Raios X
5.
ACS Earth Space Chem ; 8(2): 323-334, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379836

RESUMO

Radioiodine (129I) poses a potential risk to human health and the environment at several U.S. Department of Energy sites, including the Hanford Site, located in southeastern Washington State. Experimental studies and numerical modeling were performed to provide a technical basis for field-scale modeling of iodine sorption and transport behavior. The experiments were carried out using six columns of repacked contaminated sediments from the Hanford Site. Although iodate has been determined to be the dominant iodine species at the Hanford Site, the sorption and transport behaviors of different iodine species were investigated in a series of column experiments by first leaching sediments with artificial groundwater (AGW) followed by AGW containing iodate (IO3-), iodide (I-), or organo-iodine (2-iodo-5-methoxyphenol, C7H7IO2). Ferrihydrite amendments were added to the sediments for three of the columns to evaluate the impact of ferrihydrite on 129I attenuation. The results showed that ferrihydrite enhanced the iodate sorption capacity of the sediment and retarded the transport but had little effect on iodide or organo-I, providing a technical basis for developing a ferrihydrite-based remedial strategy for iodate under oxidizing conditions. Data from the column transport experiments were modeled using the linear equilibrium Freundlich isotherm model, the kinetic Langmuir adsorption model, and a distributed rate model. Comparisons of the experimental data and modeling results indicated that sorption was best represented with the distributed rate model with rates and maximum sorption extents varying by iodine species and ferrihydrite treatment. However, the linear Freundlich isotherm (Kd) model was also found to fit the laboratory experimental data relatively well, suggesting that the Kd model could also be used to represent iodine transport at the field scale.

6.
Environ Sci Technol ; 47(5): 2361-9, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23373896

RESUMO

During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction.


Assuntos
Compostos Ferrosos/análise , Compostos Ferrosos/química , Shewanella putrefaciens/química , Urânio/química , Adsorção , Biodegradação Ambiental , Transporte de Elétrons , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Shewanella putrefaciens/metabolismo , Espectroscopia de Mossbauer , Sulfetos/metabolismo , Urânio/metabolismo , Espectroscopia por Absorção de Raios X
7.
Environ Sci Technol ; 47(1): 23-36, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23092162

RESUMO

Gas leakage from deep storage reservoirs is a major risk factor associated with geologic carbon sequestration (GCS). A systematic understanding of how such leakage would impact the geochemistry of potable aquifers and the vadose zone is crucial to the maintenance of environmental quality and the widespread acceptance of GCS. This paper reviews the current literature and discusses current knowledge gaps on how elevated CO(2) levels could influence geochemical processes (e.g., adsorption/desorption and dissolution/precipitation) in potable aquifers and the vadose zone. The review revealed that despite an increase in research and evidence for both beneficial and deleterious consequences of CO(2) migration into potable aquifers and the vadose zone, significant knowledge gaps still exist. Primary among these knowledge gaps is the role/influence of pertinent geochemical factors such as redox condition, CO(2) influx rate, gas stream composition, microbial activity, and mineralogy in CO(2)-induced reactions. Although these factors by no means represent an exhaustive list of knowledge gaps we believe that addressing them is pivotal in advancing current scientific knowledge on how leakage from GCS may impact the environment, improving predictions of CO(2)-induced geochemical changes in the subsurface, and facilitating science-based decision- and policy-making on risk associated with geologic carbon sequestration.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Sequestro de Carbono , Poluição do Ar/prevenção & controle , Fenômenos Geológicos
8.
ACS Eng Au ; 3(6): 426-442, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38144676

RESUMO

The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.

9.
Sci Rep ; 12(1): 3407, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232970

RESUMO

Nutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S. Carolina) to identify alteration at the nanometer to micron scales based on microscopy-tomography analyses. Investigations of fungal-grain contacts revealed (i) a hypha-biofilm-basaltic glass interface coinciding with titanomagnetite inclusions exposed on the grain surface and embedded in the glass matrix and (ii) native dendritic and subhedral titanomagnetite inclusions in the upper 1-2 µm of the grain surface that spanned the length of the fungal-grain interface. We provide evidence of submicron basaltic glass dissolution occurring at a fungal-grain contact in a soil field setting. An example of how fungal-mediated weathering can be distinguished from abiotic mechanisms in the field was demonstrated by observing hyphal selective occupation and hydrolysis of glass-titanomagnetite surfaces. We hypothesize that the fungi were drawn to basaltic glass-titanomagnetite boundaries given that titanomagnetite exposed on or very near grain surfaces represents a source of iron to microbes. Furthermore, glass is energetically favorable to weathering in the presence of titanomagnetite. Our observations demonstrate that fungi interact with and transform basaltic substrates over a three-year time scale in field environments, which is central to understanding the rates and pathways of biogeochemical reactions related to nuclear waste disposal, geologic carbon storage, nutrient cycling, cultural artifact preservation, and soil-formation processes.


Assuntos
Hifas , Silicatos , Florestas , Hifas/metabolismo , Silicatos/metabolismo , Solo
10.
Environ Sci Technol ; 45(11): 4904-13, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21557602

RESUMO

During the nuclear waste vitrification process volatilized (99)Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [(99)Tc(VII)O(4)(-)] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 µg Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.


Assuntos
Compostos de Ferro/química , Minerais/química , Resíduos Radioativos , Tecnécio/química , Poluentes Radioativos/química , Espectroscopia por Absorção de Raios X
11.
J Environ Radioact ; 237: 106711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388522

RESUMO

The remediation of co-located contaminants in the vadose zone can be challenging due to accessibility and responses of different contaminants to remedial actions. At the Hanford Site (WA, USA), multiple radionuclides and other hazardous contaminants are present in the vadose zone and groundwater, including iodine-129 (I), technetium-99 (Tc), uranium-238 (U), chromium (Cr), and nitrate (NO3-). We evaluated a layered Bi oxyhydroxide material for its potential to remove individual and co-located contaminants with a series of batch experiments that investigated a range of plume conditions, followed by solid phase characterization of the reacted bismuth material. The results demonstrated successful removal of four contaminants (>98% removal of I, Tc, U, and Cr from the aqueous phase after 30 days) when tested individually. When contaminants were combined, a slight decrease in Tc removal occurred (-6%p). The addition of sediment decreased the removal for Tc and I, but U and Cr removal was unaffected. The results of these batch tests demonstrated that the bismuth based oxy-hydroxide material is a promising material for sequestering multiple contaminants in situ.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Poluentes Radioativos da Água , Bismuto , Poluentes Radioativos da Água/análise
12.
J Contam Hydrol ; 235: 103705, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927336

RESUMO

A practical approach for in situ hydrous ferric oxide (HFO) precipitation was developed for iodine immobilization under field-scale conditions at the Hanford Site. A series of 1D meter-long bench-top column experiments packed with Hanford sediments was conducted with a single acidic ferric solution (0.1 M, pH = 1.5) injection. Because carbonate and clay minerals are widely present in sediments, self-pH buffering of the injected acidic ferric solution occurred due to mineral dissolution, leading to HFO precipitation under a neutral condition. Up to ~12 mg/g Fe as HFO successfully precipitated and evenly distributed in the column sediments, and the remobilization of the neoformed HFO precipitates was limited (≤ ~3.16 wt% after over 100 pore volumes (pv) of flushing). The transport of iodate (IO3-) in the HFO-amended sediments was strongly retarded through both adsorption and co-precipitation processes. However, reversible adsorption of iodine on HFO was observed, which might limit its application to slow-moving groundwater systems.


Assuntos
Água Subterrânea , Iodo , Adsorção , Carbonatos , Compostos Férricos
13.
J Environ Radioact ; 214-215: 106183, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32063288

RESUMO

Extensive vadose zone metals and organic contamination remains at many former industrial and defense manufacturing sites, and effective remedial solutions are needed to slow or prevent its migration to groundwater. In this study, the application of gaseous substrates to stimulate microbial respiratory reduction of comingled radioisotopes and nitrate under unsaturated conditions was examined for possible application at the Hanford Site, a former nuclear production facility in southeastern WA, USA. First, screening studies were performed to qualitatively measure the sediment respiratory response to 14 gaseous or volatile organic substrates at two moisture contents, 4% and 8%. Volatile substrates produced the strongest respiratory response, among them were butyrate, pentane, butyl acetate. Ethane and butane were the most effective gaseous substrates but only at 8% water content. Hanford sediment from two waste sites with distinctive chemistries were wetted to 7% moisture content, packed into columns, and treated with ethane or butane. After 4 weeks, columns were then leached to quantify retardation in the mobility of aqueous contaminant concentrations compared to no gas control columns. Treatment with both gases resulted in >80% removal of Cr from the aqueous phase. However, NO3 concentration and a waste sites exposure history to NO3 had a major effect on U and Tc reduction. Incomplete nitrate reduction outcompeted U and Tc in waste site sediments having limited prior exposure to NO3. Conversely, waste site sediments co-contaminated with NO3 were able to achieve highly reduced conditions resulting in complete denitrification of NO3, and delayed leaching of U and Tc. This implied effective reduction of both contaminants to less mobile species. This study demonstrates that unsaturated vadose sediments at Hanford waste sites have the capacity for a sustained respiratory response to gaseous substrate injection, which could potentially be deployed as part of an overall strategy to reduce the flux of long-lived radionuclides to groundwater at Hanford and other legacy waste sites.


Assuntos
Gases/química , Monitoramento de Radiação , Sedimentos Geológicos , Água Subterrânea , Radioisótopos , Poluentes Radioativos da Água
14.
Sci Total Environ ; 736: 137839, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32507289

RESUMO

Soil organic matter (SOM) dynamics are central to soil biogeochemistry and fertility. The retention of SOM is governed initially by interactions with minerals, which mediate the sorption of chemically diverse organic matter (OM) molecules via distinct surface areas and chemical functional group availabilities. Unifying principles of mineral-OM interactions remain elusive because of the multi-layered nature of biochemical-mineral interactions that contribute to soil aggregate formation and the heterogeneous nature of soils among ecosystems. This study sought to understand how soil mineralogy as well as nitrogen (N) enrichment regulate OM composition in grassland soils. Using a multi-site grassland experiment, we demonstrate that the composition of mineral-associated OM depended on the clay content and specific mineral composition in soils across the sites. With increasing abundance of ferrihydrite (Fh) across six different grassland locations, OM in the hydrophobic zone became more enriched in lipid- and protein-like compounds, whereas the kinetic zone OM became more enriched in lignin-like molecules. These relationships suggest that the persistence of various classes of OM in soils may depend on soil iron mineralogy and provide experimental evidence to support conceptual models of zonal mineral-OM associations. Experimental N addition disrupted the accumulation of protein-like molecules in the hydrophobic zone and the positive correlation of lignin-like molecules in the kinetic zone with Fh content, compared to unfertilized soils. These data suggest that mineralogy and clay content together influence the chemical composition not only of mineral-associated OM, but also of soluble compounds within the soil matrix. If these relationships are prevalent over larger spatial and temporal scales, they provide a foundation for understanding SOM cycling and persistence under a variety of environmental contexts.

15.
Sci Total Environ ; 716: 132849, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32057506

RESUMO

The objective of this review is to evaluate materials for use as a barrier or other deployed technology to treat technetium-99 (Tc) in the subsurface. To achieve this, Tc interactions with different materials are considered within the context of remediation strategies. Several naturally occurring materials are considered for Tc immobilization, including iron oxides and low solubility sulfide phases. Synthetic materials are also considered, and include tin-based materials, sorbents (resins, activated carbon, modified clays), layered double hydroxides, metal organic frameworks, cationic polymeric networks and aerogels. All of the materials were evaluated for their potential in-situ and ex-situ performance with respect to long-term Tc uptake and immobilization, environmental impacts and deployability. Other factors such as the technology maturity, cost and availability were also considered. Given the difficulty of evaluating materials under different experimental conditions (e.g., solution chemistry, redox conditions, solution to solid ratio, Tc concentration etc.), a subset of these materials will be selected, on the basis of this review, for subsequent standardized batch loading tests.

16.
Sci Total Environ ; 716: 132820, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31982189

RESUMO

Radioiodine-129 (129I) in the subsurface is mobile and limited information is available on treatment technologies. Scientific literature was reviewed to compile information on materials that could potentially be used to immobilize 129I through sorption and redox-driven processes, with an emphasis on ex-situ processes. Candidate materials to immobilize 129I include iron minerals, sulfur-based materials, silver-based materials, bismuth-based materials, ion exchange resins, activated carbon, modified clays, and tailored materials (metal organic frameworks (MOFS), layered double hydroxides (LDHs) and aerogels). Where available, compiled information includes material performance in terms of (i) capacity for 129I uptake; (ii) long-term performance (i.e., solubility of a precipitated phase); (iii) technology maturity; (iv) cost; (v) available quantity; (vi) environmental impact; (vii) ability to emplace the technology for in situ use at the field-scale; and (viii) ex situ treatment (for media extracted from the subsurface or secondary waste streams). Because it can be difficult to compare materials due to differences in experimental conditions applied in the literature, materials will be selected for subsequent standardized batch loading tests.

17.
Front Microbiol ; 10: 2460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708909

RESUMO

Incomplete knowledge of environmental transformation reactions limits our ability to accurately inventory and predictably model the fate of radioiodine. The most prevalent chemical species of iodine include iodate (IO3 -), iodide (I-), and organo-iodine. The emission of gaseous species could be a loss or flux term but these processes have not previously been investigated at radioiodine-impacted sites. We examined iodide methylation and volatilization for Hanford Site sediments from three different locations under native and organic substrate amended conditions at three iodide concentrations. Aqueous and gaseous sampling revealed methyl-iodide to be the only iodinated compound produced under biotic conditions. No abiotic transformations of iodide were measured. Methyl-iodide was produced by 52 out of 54 microcosms, regardless of prior exposure to iodine contamination or the experimental concentration. Interestingly, iodide volatilization activity was consistently higher under native (oligotrophic) Hanford sediment conditions. Carbon and nutrients were not only unnecessary for microbial activation, but supplementation resulted in >three-fold reduction in methyl-iodide formation. This investigation not only demonstrates the potential for iodine volatilization in deep, oligotrophic subsurface sediments at a nuclear waste site, but also emphasizes an important role for biotic methylation pathways to the long-term management and monitoring of radioiodine in the environment.

18.
J Hazard Mater ; 379: 119364, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-29753522

RESUMO

One of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t1/2 = 1.57 × 107 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (I-) or iodate (IO3-). Also tested was the selectivity of AgAero towards I- in the presence of other halide anions. AgAero exhibited fast and complete removal of I- from DIW, slower but complete removal of I- from WTP off-gas simulants, preferred removal of I- over Br- and Cl-, and it demonstrated ability to remove IO3- through reduction to I-.

19.
Sci Total Environ ; 676: 482-492, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048177

RESUMO

This study of vadose zone and aquifer sediments beneath a former dichromate spill site showed that the persistence of CrVI in the sediments and the large differences in released mass and rate was caused by the dissolution of multiple CrVI surface phases. Vadose zone sediments contained numerous 1 to 10 µm high solubility calcium chromate crystals, with lesser amounts of unidentified phases indicated by Ba/Cr association in weathered pyroxenes and Ca/Cr association in weathered Ca-rich plagioclase. Most (>90%) of the CrVI mass in these vadose zone sediments was readily leached in laboratory columns at high concentrations (up to 187 mg/L CrVI) likely from the highly soluble calcium chromate. Additional CrVI associated with other CrVI surface phases was additionally slowly released over 100 s of hours. The source of Ca and Ba for the CrVI precipitates may be from mineral dissolution associated with the historical surface spills of CrVI as an acidic dichromate solution. In contrast, aquifer sediments contained significantly less CrVI, which was slowly released over 100 s of hours. Small-sized CrVI-containing precipitates (<5 µm) were associated with Ca, Fe, and, to a lesser extent, Ba. Leaching with groundwater caused a decrease in ferrous iron surface phases. The observed leaching of CrVI from vadose zone and aquifer sediments has created a continuous source of CrVI to groundwater.

20.
Sci Total Environ ; 691: 466-475, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323591

RESUMO

Multiple processes affect the fate of the radioactive isotope 129I in the environment. Primary categories of these processes include electron transfer reactions mediated by minerals and microbes, adsorption to sediments, interactions with organic matter, co-precipitation, and volatilization. A description of dominant biogeochemical processes is provided to describe the interrelationship of these processes and the associated iodine chemical species. The majority of the subsurface iodine fate and transport studies in the United States have been conducted at U.S. Department of Energy (DOE) sites where radioisotopes of iodine are present in the environment and stored waste. The DOE Hanford Site and Savannah River Site (SRS) are used to illustrate how the iodine species and dominant processes at a site are controlled by the prevailing site biogeochemical conditions. These sites differ in terms of climate (arid vs. sub-tropical), major geochemical parameters (e.g., pH ~7.5 vs. 4), and mineralogy (carbonate vs. Fe/Al oxide dominated). The iodine speciation and dominant processes at a site also have implications for selection and implementation of suitable remedy approaches for 129I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA