Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641226

RESUMO

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Proteoma , Fator de Transcrição STAT1 , Silicose , Animais , Silicose/metabolismo , Silicose/tratamento farmacológico , Silicose/patologia , Fator de Transcrição STAT1/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Acetilação/efeitos dos fármacos , Camundongos , Dióxido de Silício , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Proteômica/métodos , Masculino , Ácido Succínico/metabolismo
2.
Circulation ; 149(17): 1354-1371, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38314588

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS: Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS: We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS: Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.

3.
Exp Cell Res ; 398(1): 112392, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227315

RESUMO

BACKGROUND: The proliferation of pulmonary arterial smooth muscle cells (PASMCs) and subsequent pulmonary vascular remodeling leads to pulmonary arterial hypertension (PAH). Understanding the underlying mechanisms and identifying molecules that can suppress PASMCs proliferation is critical for developing effective pharmacological treatment. We previously showed that plasminogen activator inhibitor-2 (PAI-2) inhibited human PASMC (hPASMCs) proliferation in vitro. However, its inhibitory effect on PAH remains to be determined, and the mechanism remains to be illustrated. METHODS: We compared serum PAI-2 levels between PAH patients and healthy controls, and examined the correlation between PAI-2 level and disease severity. In monocrotaline-induced PAH rats, we examined the effects of exogenous PAI-2 administration on pulmonary vascular remodeling and PAH development. The effect of PAI-2 and potential mechanisms was further examined in cultured hPASMCs. RESULTS: The serum PAI-2 was decreased in PAH patients compared with controls. PAI-2 level was negatively correlated with mean pulmonary arterial pressure and estimated systolic pulmonary arterial pressure in ultrasonic cardiogram, while positively correlated with 6-min walking distance. In rats, administration of exogenous PAI-2 significantly reversed monocrotaline-induced PAH, as indicated by the decrease in right ventricle systolic pressure, right ventricular hypertrophy index and percent media thickness of pulmonary arterioles. Further mechanistic investigation in hPASMCs showed that PAI-2 inhibited cell proliferation by preventing the activation of PI3K/Akt and ERK pathways. CONCLUSION: PAI-2 is downregulated in PAH patients. PAI-2 attenuates PAH development by suppressing hPASMCs proliferation via the inhibition of PI3K/Akt and ERK pathways. PAI-2 may serve as a potential biomarker and therapeutic target for PAH.


Assuntos
Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Adulto , Animais , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/patologia , Inibidor 2 de Ativador de Plasminogênio/administração & dosagem , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley
4.
Acta Pharmacol Sin ; 43(4): 908-918, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34316030

RESUMO

Silicosis is a global occupational disease characterized by lung dysfunction, pulmonary inflammation, and fibrosis, for which there is a lack of effective drugs. Pirfenidone has been shown to exert anti-inflammatory and anti-fibrotic properties in the lung. However, whether and how pirfenidone is effective against silicosis remains unknown. Here, we evaluated the efficacy of pirfenidone in the treatment of early and advanced silicosis in an experimental mouse model and explored its potential pharmacological mechanisms. We found that pirfenidone alleviated silica-induced lung dysfunction, secretion of inflammatory cytokines (TNF-α, IL-1ß, IL-6) and deposition of fibrotic proteins (collagen I and fibronectin) in both early and advanced silicosis models. Moreover, we observed that both 100 and 200 mg/kg pirfenidone can effectively treat early-stage silicosis, while 400 mg/kg was recommended for advanced silicosis. Mechanistically, antibody array and bioinformatic analysis showed that the pathways related to IL-17 secretion, including JAK-STAT pathway, Th17 differentiation, and IL-17 pathway, might be involved in the treatment of silicosis by pirfenidone. Further in vivo experiments confirmed that pirfenidone reduced the production of IL-17A induced by silica exposure via inhibiting STAT3 phosphorylation. Neutralizing IL-17A by anti-IL-17A antibody improved lung function and reduced pulmonary inflammation and fibrosis in silicosis animals. Collectively, our study has demonstrated that pirfenidone effectively ameliorated silica-induced lung dysfunction, pulmonary inflammation and fibrosis in mouse models by inhibiting the secretion of IL-17A.


Assuntos
Interleucina-17 , Pneumonia , Animais , Modelos Animais de Doenças , Fibrose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-17/metabolismo , Janus Quinases/metabolismo , Janus Quinases/uso terapêutico , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Piridonas , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/uso terapêutico , Transdução de Sinais , Dióxido de Silício/toxicidade
5.
Acta Pharmacol Sin ; 43(5): 1274-1284, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417574

RESUMO

Silicosis caused by inhalation of silica particles leads to more than ten thousand new occupational exposure-related deaths yearly. Exacerbating this issue, there are currently few drugs reported to effectively treat silicosis. Tetrandrine is the only drug approved for silicosis treatment in China, and despite more than decades of use, its efficacy and mechanisms of action remain largely unknown. Here, in this study, we established silicosis mouse models to investigate the effectiveness of tetrandrine of early and late therapeutic administration. To this end, we used multiple cardiopulmonary function test, as well as markers for inflammation and fibrosis. Moreover, using single cell RNA sequencing and transcriptomics of lung tissue and quantitative microarray analysis of serum from silicosis and control mice, our results provide a novel description of the target pathways for tetrandrine. Specifically, we found that tetrandrine attenuated silicosis by inhibiting both the canonical and non-canonical NLRP3 inflammasome pathways in lung macrophages. Taken together, our work showed that tetrandrine yielded promising results against silicosis-associated inflammation and fibrosis and further lied the groundwork for understanding its molecular targets. Our results also facilitated the wider adoption and development of tetrandirne, potentially accelerating a globally accepted therapeutic strategy for silicosis.


Assuntos
Inflamassomos , Silicose , Animais , Benzilisoquinolinas , Fibrose , Inflamassomos/metabolismo , Inflamação/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Silicose/tratamento farmacológico , Silicose/metabolismo
6.
Ecotoxicol Environ Saf ; 202: 110834, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622305

RESUMO

Silicosis is caused by massive inhalation of silica-based particles, which leads to pulmonary inflammation, pulmonary fibrosis and lung dysfunction. Currently, the pathophysiological process of silicosis has not been well studied. Here, we defined the progression of silicosis as four stages by unsupervised clustering analysis: normal stage, inflammatory stage, progressive stage and fibrotic stage. Specifically, in normal stage, the lung function was normal, and no inflammation or fibrosis was detected in the lung tissue. Inflammatory stage showed a remarkable pulmonary inflammation but mild fibrosis and lung dysfunction. In progressive stage, significant lung dysfunction was observed, while pulmonary inflammation and fibrosis continued to deteriorate. Fibrotic stage revealed the most severe pulmonary fibrosis and lung dysfunction but no significant deterioration in inflammation. Since the common features were founded in both silicosis patients and rodents, we speculated that the pathophysiological processes of silicosis in patients might be similar to the rodents. Collectively, our new classification identified the process of silicosis, clarified the pathophysiological features of each stage, and provided some new insights for the progression of the disease.


Assuntos
Silicose/fisiopatologia , Animais , Fibrose , Humanos , Inflamação/patologia , Pulmão/patologia , Pneumonia/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Dióxido de Silício
7.
Thorax ; 74(6): 564-578, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30777899

RESUMO

BACKGROUND: The role of interleukin 17 (IL-17) in hypoxic pulmonary hypertension (HPH) remains unclear. This study is designed to explore whether IL-17 is a potential target for HPH treatment. METHODS: Clinic samples from the lung tissue and serum were obtained from qualified patients. Western blotting, immunohistochemistry and/or ELISA were used to measure the expression of relevant proteins. HPH models were established in C57BL/6 wild-type (WT) and IL-17-/- mice and were treated with exogenous recombinant mouse IL-17 (rmIL-17) or an IL-17 neutralising antibody. Assays for cell proliferation, angiogenesis and adhesion were employed to analyse the behaviours of human pulmonary arterial endothelial cells (HPAECs). A non-contact Transwell coculture model was used to evaluate intercellular interactions. RESULTS: Expression of IL-17 was increased in lung tissue of both patients with bronchiectasis/COPD-associated PH and HPH mouse model. Compared with WT mice, IL-17-/- mice had attenuated HPH, whereas administration of rmIL-17 aggravated HPH. In vitro, recombinant human IL-17 (rhIL-17) promoted proliferation, angiogenesis and adhesion in HPAECs through upregulation of Wnt3a/ß-catenin/CyclinD1 pathway, and siRNA-mediated knockdown of ß-catenin almost completely reversed this IL-17-mediated phenomena. IL-17 promoted the proliferation but not the migration of human pulmonary arterial smooth muscle cells (HPASMCs) cocultured with HPAECs under both normoxia and hypoxia, but IL-17 had no direct effect on proliferation and migration of HPASMCs. Blockade of IL-17 with a neutralising antibody attenuated HPH in WT mice. CONCLUSIONS: IL-17 contributes to the pathogenesis of HPH through upregulation of ß-catenin expression. Targeting IL-17 might provide potential benefits for alternative therapeutic strategies for HPH.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Interleucina-17/antagonistas & inibidores , Interleucina-17/farmacologia , beta Catenina/metabolismo , Adulto , Animais , Adesão Celular , Proliferação de Células , Técnicas de Cocultura , Regulação para Baixo , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica
8.
Acta Pharm Sin B ; 14(4): 1726-1741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572107

RESUMO

Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.

9.
Acta Pharm Sin B ; 12(3): 1213-1224, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530143

RESUMO

Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide, but the molecular basis underlying its development remains unclear. An accumulating body of evidence supports gasdermin D (GSDMD)-mediated pyroptosis as a key component in the development of various pulmonary diseases. However, there is little experimental evidence connecting silicosis and GSDMD-driven pyroptosis. In this work, we investigated the role of GSDMD-mediated pyroptosis in silicosis. Single-cell RNA sequencing of healthy and silicosis human and murine lung tissues indicated that GSDMD-induced pyroptosis in macrophages was relevant to silicosis progression. Through microscopy we then observed morphological alterations of pyroptosis in macrophages treated with silica. Measurement of interleukin-1ß release, lactic dehydrogenase activity, and real-time propidium iodide staining further revealed that silica induced pyroptosis of macrophages. Additionally, we verified that both canonical (caspase-1-mediated) and non-canonical (caspase-4/5/11-mediated) signaling pathways mediated silica-induced pyroptosis activation, in vivo and in vitro. Notably, Gsdmd knockout mice exhibited dramatically alleviated silicosis phenotypes, which highlighted the pivotal role of pyroptosis in this disease. Taken together, our results demonstrated that macrophages underwent GSDMD-dependent pyroptosis in silicosis and inhibition of this process could serve as a viable clinical strategy for mitigating silicosis.

10.
Chin Med J (Engl) ; 134(8): 898-907, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33879753

RESUMO

ABSTRACT: Pneumoconiosis refers to a spectrum of pulmonary diseases caused by inhalation of mineral dust, usually as the result of certain occupations. The main pathological features include chronic pulmonary inflammation and progressive pulmonary fibrosis, which can eventually lead to death caused by respiratory and/or heart failure. Pneumoconiosis is widespread globally, seriously threatening global public health. Its high incidence and mortality lie in improper occupational protection, and in the lack of early diagnostic methods and effective treatments. This article reviews the epidemiology, safeguard procedures, diagnosis, and treatment of pneumoconiosis, and summarizes recent research advances and future research prospects.


Assuntos
Doenças Profissionais , Exposição Ocupacional , Pneumoconiose , Fibrose Pulmonar , Poeira , Humanos , Pneumoconiose/diagnóstico , Pneumoconiose/epidemiologia
11.
Theranostics ; 11(5): 2381-2394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500731

RESUMO

Rationale: Silicosis is a severe occupational lung disease. Current treatments for silicosis have highly limited availability (i.e., lung transplantation) or, do not effectively prolong patient survival time (i.e., lung lavage). There is thus an urgent clinical need for effective drugs to retard the progression of silicosis. Methods: To systematically characterize the molecular changes associated with silicosis and to discover potential therapeutic targets, we conducted a transcriptomics analysis of human lung tissues acquired during transplantation, which was integrated with transcriptomics and metabolomics analyses of silicosis mouse lungs. The results from the multi-omics analyses were then verified by qPCR, western blot, and immunohistochemistry. The effect of Ramatroban on the progression of silicosis was evaluated in a silica-induced mouse model. Results: Wide metabolic alterations were found in lungs from both human patients and mice with silicosis. Targeted metabolite quantification and validation of expression of their synthases revealed that arachidonic acid (AA) pathway metabolites, prostaglandin D2 (PGD2) and thromboxane A2 (TXA2), were significantly up-regulated in silicosis lungs. We further examined the effect of Ramatroban, a clinical antagonist of both PGD2 and TXA2 receptors, on treating silicosis using a mouse model. The results showed that Ramatroban significantly alleviated silica-induced pulmonary inflammation, fibrosis, and cardiopulmonary dysfunction compared with the control group. Conclusion: Our results revealed the importance of AA metabolic reprogramming, especially PGD2 and TXA2 in the progression of silicosis. By blocking the receptors of these two prostanoids, Ramatroban may be a novel potential therapeutic drug to inhibit the progression of silicosis.


Assuntos
Biomarcadores/metabolismo , Pulmão/patologia , Metaboloma , Prostaglandina D2/metabolismo , Silicose/patologia , Tromboxano A2/metabolismo , Transcriptoma , Animais , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Silicose/genética , Silicose/metabolismo
12.
Front Genet ; 12: 652901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149803

RESUMO

Silicosis is a fatal occupational lung disease which currently has no effective clinical cure. Recent studies examining the underlying mechanism of silicosis have primarily examined experimental models, which may not perfectly reflect the nature of human silicosis progression. A comprehensive profiling of the molecular changes in human silicosis lungs is urgently needed. Here, we conducted RNA sequencing (RNA-seq) on the lung tissues of 10 silicosis patients and 7 non-diseased donors. A total of 2,605 differentially expressed genes (DEGs) and critical pathway changes were identified in human silicosis lungs. Further, the DEGs in silicosis were compared with those in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary diseases (COPD), to extend current knowledge about the disease mechanisms and develop potential drugs. This analysis revealed both common and specific regulations in silicosis, along with several critical genes (e.g., MUC5AC and FGF10), which are potential drug targets for silicosis treatment. Drugs including Plerixafor and Retinoic acid were predicted as potential candidates in treating silicosis. Overall, this study provides the first transcriptomic fingerprint of human silicosis lungs. The comparative transcriptome analyses comprehensively characterize pathological regulations resulting from silicosis, and provide valuable cues for silicosis treatment.

13.
Chin Med J (Engl) ; 133(1): 49-60, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31923104

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PH) is a progressive disease with limited therapeutic options, ultimately leading to right heart failure and death. Recent findings indicate the role of the Warburg effect (aerobic glycolysis) in the development of PH. However, the effect of the glycolysis inhibitor 3-bromopyruvate (3-BrPA) on the pathogenesis of PH has not been well investigated. This study aimed to determine whether 3-BrPA inhibits PH and its possible mechanism. METHODS: PH was induced in adult Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT). 3-BrPA, or phosphate-buffered saline (PBS) was administered via intraperitoneal injection every other day from the first day of MCT-injection to 4 weeks of follow-up, and indices such as right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary arteriolar remodeling indicated by percent media thickness (% MT), lactate levels and glucose consumption, were evaluated. Pulmonary arteriolar remodeling and right ventricular hypertrophy were observed in hematoxylin-eosin-stained lung sections. Western blotting, immunohistochemistry, and/or immunofluorescence analyses were used to measure the expression of relevant proteins. A cytochrome C release apoptosis assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining were used to measure cell apoptosis. RESULTS: MCT-induced PH showed a significant increase in glucose consumption (0 vs. 4 weeks: 0.87 ±â€Š0.23 vs. 2.94 ±â€Š0.47, P = 0.0042) and lactate production (0 vs. 4 weeks: 4.19 ±â€Š0.34 vs. 8.06 ±â€Š0.67, P = 0.0004). Treatment with 3-BrPA resulted in a concomitant reduction in glucose consumption (1.10 ±â€Š0.35 vs. 3.25 ±â€Š0.47, P = 0.0063), lactate production (5.09 ±â€Š0.55 vs. 8.06 ±â€Š0.67, P = 0.0065), MCT-induced increase in RVSP (39.70 ±â€Š2.94 vs. 58.85 ±â€Š2.32, P = 0.0004), pulmonary vascular remodeling (% MT, 43.45% ±â€Š1.41% vs. 63.66% ±â€Š1.78%, P < 0.0001), and right ventricular hypertrophy (RVHI, 38.57% ±â€Š2.69% vs. 62.61% ±â€Š1.57%, P < 0.0001) when compared with those of the PBS-treated group. 3-BrPA, a hexokinase 2 inhibitor, exerted its beneficial effect on PH by decreasing aerobic glycolysis and was also associated with inhibiting the expression of glucose transporter protein-1, inducing apoptosis, and suppressing inflammation. CONCLUSIONS: 3-BrPA might have a potential beneficial effect on the PH treatment.


Assuntos
Monocrotalina/toxicidade , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Piruvatos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Citocromos c/metabolismo , Imunofluorescência , Glicólise/efeitos dos fármacos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA