RESUMO
Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Animais , Suínos , Febre Aftosa/virologia , Febre Aftosa/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteases Virais 3C/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Células HEK293 , Proteólise , Fator 1 de Resposta a Butirato/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genéticaRESUMO
The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.
Assuntos
Anti-Inflamatórios , Glicosídeos , Esteroides , Glicosídeos/química , Glicosídeos/síntese química , Glicosídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Camundongos , Animais , Humanos , Teoria da Densidade Funcional , Estrutura Molecular , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Macrófagos/efeitos dos fármacosRESUMO
Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Caspase 3/metabolismo , Cisteína Endopeptidases/metabolismo , Gasderminas , Piroptose , Proteínas Virais/metabolismoRESUMO
Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Picornaviridae , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos Nus , Picornaviridae/genéticaRESUMO
Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.
Assuntos
Bacteriófago T4 , Enzimas de Restrição-Modificação do DNA , Escherichia coli , Bacteriófago T4/genética , Sistemas CRISPR-Cas , Escherichia coli/enzimologia , Escherichia coli/virologia , Genoma ViralRESUMO
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Assuntos
Vírus da Diarreia Epidêmica Suína , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus , Sensibilidade e Especificidade , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/classificação , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus/classificação , Fezes/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologiaRESUMO
BACKGROUND: Anus preservation has been a challenge in the treatment of patients with low rectal adenocarcinoma (within 5 cm from the anal verge) because it is difficult to spare the anus with its functioning sphincter complex under the safe margin of tumour resection. Patients with dMMR/MSI-H can achieve a favourable complete response (CR) rate by using a single immune checkpoint inhibitor. For patients with pMMR/MSS/MSI-L, intensified neoadjuvant three-drug chemotherapy may be the preferred option for anal preservation. In addition, the watch and wait (W&W) strategy has been proven safe and feasible for patients with rectal cancer who achieve a clinical complete response (cCR). Therefore, we initiated this clinical trial to explore the optimal neoadjuvant treatment pattern for patients with low locally advanced rectal cancer (LARC) with different MMR/MSI statuses, aiming to achieve a higher cCR rate with the W&W strategy and ultimately provide more patients with a chance of anus preservation. METHODS: This is a randomised, controlled, open-label, multicentre phase III trial. Patients with clinical stage T2-4 and/or N + tumours located within 5 cm from the anal verge are considered eligible. Based on the results of pathological biopsy, the patients are divided into two groups: dMMR/MSI-H and pMMR/MSS. Patients in the dMMR/MSI-H group will be randomly allocated in a 1:1 ratio to either arm A (monoimmunotherapy) or arm B (short-course radiotherapy followed by monoimmunotherapy). Patients in the pMMR/MSS group will be initially treated with long-term pelvic radiation with concurrent capecitabine combined with irinotecan. Two weeks after the completion of chemoradiotherapy (CRT), the patients will be randomly allocated in a 1:1 ratio to arm C (XELIRI six cycle regime) or arm D (FOLFIRINOX nine cycle regime). The irinotecan dose will be adjusted according to the UGT1A1-genotype. After treatment, a comprehensive assessment will be performed to determine whether a cCR has been achieved. If achieved, the W&W strategy will be adopted; otherwise, total mesorectal excision (TME) will be performed. The primary endpoint is cCR with the maintenance of 12 months at least, determined using digital rectal examination, endoscopy, and rectal MRI or PET/CT as a supplementary method. DISCUSSION: APRAM will explore the best anus preservation model for low LARC, combining the strategies of consolidation chemotherapy, immunotherapy, and short-course radiotherapy, and aims to preserve the anus of more patients using W&W. Our study provides an accurate individual treatment mode based on the MMR/MSI status for patients with low LARC, and more patients will receive the opportunity for anus preservation under our therapeutic strategy, which would transform into long-term benefits. TRIAL REGISTRATION: Clinicaltrials.gov NCT05669092 (Registered 28th Nov 2022).
Assuntos
Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neoplasias Pancreáticas , Neoplasias Retais , Humanos , Canal Anal , Protocolos de Quimioterapia Combinada Antineoplásica , Irinotecano , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como AssuntoRESUMO
Halide perovskites have attracted attention due to their low cost and excellent optoelectronic properties. Although their optical properties gained widespread consensus, there was still divergence in understanding carrier transport behavior. In this study, the mobility of tetragonal perovskites was investigated by empirical models, including longitudinal acoustic phonon (LAP) and polar optical phonon (POP) models. The results revealed that the mobility predicted from the LAP model was much higher than that from the POP model. A longitudinal optical phonon (LOP) was considered as the decisive scattering source for charge carriers in perovskites. Furthermore, the mobility was extremely sensitive to z-axis strain, and 8 types of perovskites with high carrier mobility were screened. Using the experimental lattice constants, the predicted mobility of CsSnI3 was µe,z = 1428 and µh,z = 2310 cm2 V-1 s-1, respectively. The tetragonal CsSnI3 has high mobility and moderate bandgaps, suggesting potential applications in high-efficiency solar cells.
RESUMO
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Assuntos
Bombyx , Proteínas de Insetos , Nosema , Nosema/fisiologia , Animais , Bombyx/microbiologia , Bombyx/metabolismo , Bombyx/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores de GABA/metabolismo , Receptores de GABA/genética , Apoptose , Larva/metabolismo , Larva/microbiologia , Larva/crescimento & desenvolvimentoRESUMO
RNA interference (RNAi) is an effective pest management strategy through silencing the crucial genes in target organisms. However, the effectiveness of targeting a single gene is often limited by the silencing efficiency due to tissue or developmental stage-specific gene expression. Moreover, multiple pests often infest the same crop simultaneously under current ecological conditions. Therefore, a combined strategy of "targeting multiple genes" and "controlling multiple pests" is expected to yield better management results. In this study, homologous genes from two globally sap-sucking pests, the peach aphid (Myzus persicae) and the whitefly (Bemisia tabaci), were screened on a genome-wide scale. Subsequently, RNAi bioassays showed silencing the genes (MpAbd-A, MpH3, MpRpL27a, and MpScr) exhibited high mortalities in both species, which were further selected for designing fusion dsRNAs. These fusion dsRNAs resulted in higher mortalities in both pests than single gene silencing and posed a minimal off-target risk to the predator ladybeetle (Propylaea japonica) based on the sequence analysis. Finally, the tobacco plants expressing the fusion dsRNAs through virus-induced gene silencing (VIGS) technology enhanced the resistance to both pests. In conclusion, this study proposes a novel RNAi-based approach for managing two sap-sucking pests simultaneously.
Assuntos
Afídeos , Hemípteros , Interferência de RNA , RNA de Cadeia Dupla , Animais , Afídeos/genética , Hemípteros/genética , RNA de Cadeia Dupla/genética , Nicotiana/genética , Nicotiana/parasitologia , Plantas Geneticamente ModificadasRESUMO
Swine are considered to be an important intermediate host in the cycle of Japanese encephalitis virus (JEV) infection. Most existing antiviral studies of JEV mainly focus on the host factor of the dead-end hosts. However, little research has addressed this in swine. Here, we found that swine interferon alpha-inducible protein 6 (sIFI6) possessed antiviral activity against JEV. In vitro studies showed that overexpression of sIFI6 inhibited the infection of JEV, while sIFI6 knockdown enhanced the infection of JEV in PK-15 cells. In addition, we also found that the structural integrity of sIFI6 was required by anti-JEV activity and that sIFI6 interacted with JEV nonstructural protein 4A (NS4A), an integral membrane protein with a pivotal function in replication complex during JEV replication. The interaction domain was mapped to the fourth transmembrane domain (TMD), also known as the 2K peptide of NS4A. The antiviral activity of sIFI6 was regulated by endoplasmic reticulum (ER) stress-related protein, Bip. In vivo studies revealed that sIFI6 alleviated symptoms of JEV infection in C57BL/6 mice. In addition, the antiviral spectrum of sIFI6 showed that sIFI6 specifically inhibited JEV infection. In conclusion, this study identified sIFI6 as a host factor against JEV infection for the first time. Our findings provide a potential drug target against JEV infection.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Antivirais/uso terapêutico , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/metabolismo , Camundongos Endogâmicos C57BL , Suínos , Replicação Viral , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Seneca Valley virus (SVV, also known as Senecavirus A), an oncolytic virus, is a nonenveloped, positive-strand RNA virus and the sole member of the genus Senecavirus within the family Picornaviridae. The mechanisms of SVV entry into cells are currently almost unknown. In the present study, we found that SVV entry into HEK293T cells is acidic pH-dependent by using ammonium chloride (NH4Cl) and chloroquine, both of which could inhibit SVV infection. We confirmed that dynamin II is required for SVV entry by using dynasore, silencing the dynamin II protein, or expressing the dominant-negative (DN) K44A mutant of dynamin II. Then, we discovered that chlorpromazine (CPZ) treatment or knockdown of the clathrin heavy chain (CLTC) protein significantly inhibited SVV infection. In addition, overexpression of CLTC promoted SVV infection. Caveolin-1 and membrane cholesterol were also required for SVV endocytosis. Notably, utilizing genistein, EIPA or nocodazole, we observed that macropinocytosis and microtubules are not involved in SVV entry. Furthermore, overexpression of the Rab7 and Rab9 proteins but not the Rab5 or Rab11 proteins promoted SVV infection. The findings were further validated by the knockdown of four Rabs and Lamp1 proteins, indicating that after internalization, SVV is transported from late endosomes to the trans-Golgi network (TGN) or lysosomes, respectively, eventually releasing its RNA into the cytosol from the lysosomes. Our findings concretely revealed SVV endocytosis mechanisms in HEK293T cells and provided an insightful theoretical foundation for further research into SVV oncolytic mechanisms.
Assuntos
Dinamina II , Picornaviridae , Humanos , Células HEK293 , Endocitose , Endossomos , Lisossomos , Internalização do VírusRESUMO
OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.
Assuntos
Bacteriófagos , Mastite Bovina , Infecções Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Feminino , Bovinos , Animais , Suínos , Camundongos , Humanos , Prófagos/genética , Mastite Bovina/tratamento farmacológico , Antibacterianos/farmacologia , Infecções Estreptocócicas/microbiologiaRESUMO
Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.
Assuntos
Proteases Virais 3C , Picornaviridae , Proteólise , RNA Helicases , Proteases Virais 3C/metabolismo , Animais , Cromatografia Líquida , Imunoprecipitação , Picornaviridae/enzimologia , Picornaviridae/genética , Picornaviridae/crescimento & desenvolvimento , Picornaviridae/fisiologia , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , Suínos/virologia , Doença Vesicular Suína/virologia , Espectrometria de Massas em Tandem , Replicação ViralRESUMO
BACKGROUND: Porcine circovirus type 2 (PCV2), a member of the genus Circovirus and family Circoviridae, is a closed, small, circular, and single-stranded DNA virus, and it is a crucial swine pathogen of porcine circovirus-associated diseases (PCVADs). PCV2 was first detected in PK-15(ATCC-CCL) cells in 1974, which has caused significant economic loss to the swine industry throughout the world. And the first case of PCV2 was reported in China in 2000. At present, PCV2d is the main genotype circulating widely in China. METHODS: Lymph samples were obtained from piglets with emaciation and respiratory disease in Guangxi province, China. The main pathogens were detected via PCR from lymph samples, and then PCV2-single positive samples were used to inoculate with PK-15 cells. After successive generations, the isolate was subsequently identified by polymerase chain reaction (PCR), immunofluorescence assay (IFA), Western blot (WB), and transmission electron microscopic (TEM). The full-length genome and genetic characterization of isolates were analyzed by Sanger sequencing. The TCID50 of the PCV2-GX-6 was determined by IFA, and the pathogenicity of PCV2 in BALB/c mice was analyzed via the mouse model. RESULTS: The isolates were successfully isolated from clinical samples. The complete genome of PCV2-GX-4, PCV2-GX-6, PCV2-GX-7, PCV2-GX-11 and PCV2-GX-16 have been amplified, sequenced, and deposited in GenBank (accession no.: OR133747, OQ803314, OR133748, OR133749, OR133750). Homology and phylogenetic analysis with reference strains showed that the isolates belonged to the PCV2d genotype. The PCV2-GX-6 could be stably passaged more than 30 times in PK-15 cells. PCV2-GX-6 was identified by PCR, IFA, WB and TEM. The results of homology showed that PCV2-GX-6 was closely related to the reference strains PCV2-JS17-8 (GenBank accession no.: MH211363). Pathogenicity studies in mice have shown that PCV2-GX-6 can lead to growth inhibition of mice. Meanwhile PCV2-GX-6 caused the typical lesions of spleen, lung and kidney. The results of qPCR showed that PCV2 can effectively proliferate in the liver, spleen, lung, and kidney. CONCLUSION: PCV2-GX-6 can successfully infect BLAB/c mice, effectively proliferate in major organs, and possessed high pathogenicity. In conclusion, combined with the genotype and pathogenicity of PCV2d currently prevalent, PCV2-GX-6 can be used as a candidate vaccine strain.
Assuntos
Circovirus , Animais , Camundongos , Suínos , Circovirus/genética , China , Filogenia , Virulência , Camundongos Endogâmicos BALB CRESUMO
Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.
Assuntos
Proteases Virais 3C/imunologia , Proteínas de Ligação a Fosfato/imunologia , Picornaviridae/enzimologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Piroptose/imunologia , SuínosRESUMO
BACKGROUND: Research has shown that epigenetic modification are involved the regulation of diapause in bivoltine silkworms (Bombyx mori), but it remains unclear how epigenetic modification in response to environmental signals precisely to regulate the diapause processing of bivoltine B. mori. METHODS AND RESULTS: In this study, the diapause terminated eggs of bivoltine B. mori, Qiufeng (QF) were divided into two groups: a QFHT group incubated at 25 °C with a natural day/night cycle to produce diapause eggs, and a QFLT group incubated at 16.5 °C in darkness to produce non-diapause eggs. On the 3rd day of the pupal stage, the total RNAs of the eggs were extracted and their N6-adenosine methylation (m6A) abundances were analyzed to explore the effects of m6A methylation on diapause in the silkworm. The results showed that 1984 m6A peaks are shared, 1563 in QFLT and 659 in QFHT. The m6A methylation level of the QFLT group was higher than that of the QFHT one in various signaling pathways. The m6A methylation rate of mevalonate kinase (MK) in the insect hormone synthesis pathway was significantly different between the two groups. The knockdown of MK by RNA interference in the pupae of QFLT resulted in females laying diapause eggs rather than non-diapause eggs after mating. CONCLUSIONS: m6A methylation involves in the diapause regulation of bivoltine B. mori by changing the expression levels of MK. This result provides a clearer image of the environmental signals on the regulation of diapause in bivoltine silkworms.
Assuntos
Bombyx , Animais , Feminino , Bombyx/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Hormônios Juvenis/metabolismo , Óvulo/metabolismoRESUMO
Non-metal doping engineering has shown great potential for designing high-performance MXene-based catalysts for electrocatalytic hydrogen evolution. We rationally design 14 kinds of nonmetal atom-doped Mo2CO2 catalysts and investigate the effects of nonmetal doping on the thermal stability and hydrogen evolution reaction (HER) catalytic activity of these structures through first-principles calculations. The results show that the addition of nonmetal dopants, such as Si, Cl, Br and I, on the Mo2CO2 surface can effectively improve the HER activity, making them promising candidates for effective HER catalysts. Besides, we studied the thermal stability of nonmetal doped Mo2CO2 by calculating the binding energy and explored the reason behind the variation in the binding energy. Furthermore, the origin of the HER activity difference regulated by various nonmetal dopants is explained based on the analysis of their electronic properties. We found that the number of valence electrons and Bader charge coupling of doped nonmetal atoms are effective electronic descriptors of the hydrogen adsorption strength and HER activity, which provide a clue for future prediction of highly efficient MXene-based HER catalysts.
RESUMO
Using a machine learning (ML) approach to fit DFT data, interatomic potentials have been successfully extracted. In this study, the phase transition, mechanical behavior and lattice thermal conductivity are investigated for halogen perovskites using NEP-based MD simulations in a large supercell including 16 000 atoms, which breaks through the size and temperature effects in DFT. A clear phase transition from orthorhombic (γ) â tetragonal (ß) â cubic (α) is observed during the heating process. During the cooling process, CsPbCl3 and CsPbBr3 exhibit perfect reversible behavior, while CsPbI3 only undergoes a phase transition from α to ß. Then, the key mechanical parameters, including Poisson's ratio, tensile strength, critical strain and bulk modulus, are predicted. The thermal conductivity is also investigated using the NEP-based MD simulations. At room temperature, they exhibit extremely low thermal conductivity. The predicted results are compared with the experimental results, and the rationality of ML potentials has been confirmed.
RESUMO
Recently, novel 2D InGeTe3 has been successfully synthesized and attracted attention due to its excellent properties. In this study, we investigated the mechanical properties and transport behavior of InGeX3 (X = S, Se and Te) monolayers using density functional theory (DFT) and machine learning (ML). The key physical parameters related to mechanical properties, including Poisson's ratio, elastic modulus, tensile strength and critical strain, were revealed. Using a ML method to train DFT data, we developed a neuroevolution-potential (NEP) to successfully predict the mechanical properties and lattice thermal conductivity. The fracture behavior predicted using NEP-based MD simulations in a large supercell containing 20 000 atoms could be verified using DFT. Due to the effects of size, these predicted physical parameters have a slight difference between DFT and ML methods. At 300 K, these monolayers exhibited a low thermal conductivity with the values of 13.27 ± 0.24 W m-1 K-1 for InGeS3, 7.68 ± 0.30 W m-1 K-1 for InGeSe3, and 3.88 ± 0.09 W m-1 K-1 for InGeTe3, respectively. The Boltzmann transport equation (BTE) including all electron-phonon interactions was used to accurately predict the electron mobility. Compared with InGeS3 and InGeSe3, the InGeTe3 monolayer showed flexible mechanical behavior, low thermal conductivity and high mobility.