Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Chem Soc Rev ; 53(9): 4312-4332, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38596903

RESUMO

Aqueous zinc (Zn) batteries have attracted global attention for energy storage. Despite significant progress in advancing Zn anode materials, there has been little progress in cathodes. The predominant cathodes working with Zn2+/H+ intercalation, however, exhibit drawbacks, including a high Zn2+ diffusion energy barrier, pH fluctuation(s) and limited reproducibility. Beyond Zn2+ intercalation, alternative working principles have been reported that broaden cathode options, including conversion, hybrid, anion insertion and deposition/dissolution. In this review, we report a critical assessment of non-intercalation-type cathode materials in aqueous Zn batteries, and identify strengths and weaknesses of these cathodes in small-scale batteries, together with current strategies to boost material performance. We assess the technical gap(s) in transitioning these cathodes from laboratory-scale research to industrial-scale battery applications. We conclude that S, I2 and Br2 electrodes exhibit practically promising commercial prospects, and future research is directed to optimizing cathodes. Findings will be useful for researchers and manufacturers in advancing cathodes for aqueous Zn batteries beyond Zn2+ intercalation.

2.
Chem Soc Rev ; 53(3): 1552-1591, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168798

RESUMO

Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.

3.
Chem Soc Rev ; 53(4): 2022-2055, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38204405

RESUMO

Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.

4.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840442

RESUMO

Aqueous zinc batteries are practically promising for large-scale energy storage because of cost-effectiveness and safety. However, application is limited because of an absence of economical electrolytes to stabilize both the cathode and anode. Here, we report a facile method for advanced zinc-iodine batteries via addition of a trace imidazolium-based additive to a cost-effective zinc sulfate electrolyte, which bonds with polyiodides to boost anti-self-discharge performance and cycling stability. Additive aggregation at the cathode improves the rate capacity by boosting the I2 conversion kinetics. Also, the introduced additive enhances the reversibility of the zinc anode by adjusting Zn2+ deposition. The zinc-iodine pouch cell, therefore, exhibits industrial-level performance evidenced by a ∼99.98% Coulombic efficiency under ca. 0.4C, a significantly low self-discharge rate with 11.7% capacity loss per month, a long lifespan with 88.3% of initial capacity after 5000 cycles at a 68.3% zinc depth-of-discharge, and fast-charging of ca. 6.7C at a high active-mass loading >15 mg cm-2. Highly significant is that this self-discharge surpasses commercial nickel-metal hydride batteries and is comparable with commercial lead-acid batteries, together with the fact that the lifespan is over 10 times greater than reported works, and the fast-charging performance is better than commercial lithium-ion batteries.

5.
J Am Chem Soc ; 146(32): 22850-22858, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096280

RESUMO

Carbon-carbon (C-C) coupling is essential in the electrocatalytic reduction of CO2 for the production of green chemicals. However, due to the complexity of the reaction network, there remains controversy regarding the underlying reaction mechanisms and the optimal direction for catalyst material design. Here, we present a global perspective to establish a comprehensive data set encompassing all C-C coupling precursors and catalytic active site compositions to explore the reaction mechanisms and screen catalysts via big data set analysis. The 2D-3D ensemble machine learning strategy, developed to target a variety of adsorption configurations, can quickly and accurately expand quantum chemical calculation data, enabling the rapid acquisition of this extensive big data set. Analyses of the big data set establish that (1) asymmetric coupling mechanisms exhibit greater potential efficiency compared to symmetric coupling, with the optimal path involving the coupling CHO with CH or CH2, and (2) C-C coupling selectivity of Cu-based catalysts can be enhanced through bimetallic doping including CuAgNb sites. Importantly, we experimentally substantiate the CuAgNb catalyst to demonstrate actual boosted performance in C-C coupling. Our finding evidence the practicality of our big data set generated from machine learning-accelerated quantum chemical computations. We conclude that combining big data with complex catalytic reaction mechanisms and catalyst compositions will set a new paradigm for accelerating optimal catalyst design.

6.
J Am Chem Soc ; 146(2): 1619-1626, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166387

RESUMO

Operation of rechargeable batteries at ultralow temperature is a significant practical problem because of poor kinetics of the electrode. Here, we report for the first time stabilized multiphase conversions for fast kinetics and long-term durability in ultralow-temperature, organic-sodium batteries. We establish that disodium rhodizonate organic electrode in conjunction with single-layer graphene oxide obviates consumption of organic radical intermediates, and demonstrate as a result that the newly designed organic electrode exhibits excellent electrochemical performance of a highly significant capacity of 130 mAh g-1 at -50 °C. We evidence that the full-cell configuration coupled with Prussian blue analogues exhibits exceptional cycling stability of >7000 cycles at -40 °C while maintaining a discharge capacity of 101 mAh g-1 at a high current density 300 mA g-1. We show this is among the best reported ultralow-temperature performance for nonaqueous batteries, and importantly, the pouch cell exhibits a continuous power supply despite conditions of -50 °C. This work sheds light on the distinct energy storage characteristics of organic electrode and opens up new avenues for the development of reliable and sustainable ultralow-temperature batteries.

7.
Chem Soc Rev ; 52(22): 7802-7847, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37869994

RESUMO

To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.

8.
Angew Chem Int Ed Engl ; 63(32): e202405943, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38769621

RESUMO

Electrocatalytic acetylene hydrogenation to ethylene (E-AHE) is a promising alternative for thermal-catalytic process, yet it suffers from low current densities and efficiency. Here, we achieved a 71.2 % Faradaic efficiency (FE) of E-AHE at a large partial current density of 1.0 A cm-2 using concentrated seawater as an electrolyte, which can be recycled from the brine waste (0.96 M NaCl) of alkaline seawater electrolysis (ASE). Mechanistic studies unveiled that cation of concentrated seawater dynamically prompted unsaturated interfacial water dissociation to provide protons for enhanced E-AHE. As a result, compared with freshwater, a twofold increase of FE of E-AHE was achieved on concentrated seawater-based electrolysis. We also demonstrated an integrated system of ASE and E-AHE for hydrogen and ethylene production, in which the obtained brine output from ASE was directly fed into E-AHE process without any further treatment for continuously cyclic operations. This innovative system delivered outstanding FE and selectivity of ethylene surpassed 97.0 % and 97.5 % across wide-industrial current density range (≤ 0.6 A cm-2), respectively. This work provides a significant advance of electrocatalytic ethylene production coupling with brine refining of seawater electrolysis.

9.
Angew Chem Int Ed Engl ; : e202413703, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150406

RESUMO

Zinc-iodine (Zn-I2) batteries are gaining popularity due to cost-effectiveness and ease of manufacturing. However, challenges like polyiodide shuttle effect and Zn dendrite growth hinder their practical application. Here, we report a cation exchange membrane to simultaneously prevent the polyiodide shuttle effect and regulate Zn2+ deposition. Comprised of rigid polymers, this membrane shows superior swelling resistance and ion selectivity compared to commercial Nafion. The resulting Zn-I2 battery exhibits a high Coulombic efficiency of 99.4 % and low self-discharge rate of 4.47 % after 48 h rest. By directing a uniform Zn2+ flux, the membrane promotes a homogeneous electric field, resulting in a dendrite-free Zn surface. Moreover, its microporous structure enables pre-adsorption of additional active materials prior to battery assembly, boosting battery capacity to 287 mAh g-1 at 0.1 A g-1. At 2 A g-1, the battery exhibits a steady running for 10,000 cycles with capacity retention up to 96.1 %, demonstrating high durability of the membrane. The practicality of the membrane is validated via a high-loading (35 mg cm-2) pouch cell with impressive cycling stability, paving a way for membrane design towards advanced Zn-I2 batteries.

10.
J Am Chem Soc ; 145(28): 15572-15580, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37409766

RESUMO

Electrochemical coupling between carbon and nitrogen species to generate high-value C-N products, including urea, presents significant economic and environmental potentials for addressing the energy crisis. However, this electrocatalysis process still suffers from limited mechanism understanding due to the complex reaction networks, which restricts the development of electrocatalysts beyond trial-and-error practices. In this work, we aim to improve the understanding of the C-N coupling mechanism. This goal was achieved by constructing the activity and selectivity landscape on 54 MXene surfaces by density functional theory (DFT) calculations. Our results show that the activity of the C-N coupling step is largely determined by the *CO adsorption strength (Ead-CO), while the selectivity relies more on the co-adsorption strength of *N and *CO (Ead-CO and Ead-N). Based on these findings, we propose that an ideal C-N coupling MXene catalyst should satisfy moderate *CO and stable *N adsorption. Through the machine learning-based approach, data-driven formulas for describing the relationship between Ead-CO and Ead-N with atomic physical chemistry features were further identified. Based on the identified formula, 162 MXene materials were screened without time-consuming DFT calculations. Several potential catalysts were predicted with good C-N coupling performance, such as Ta2W2C3. The candidate was then verified by DFT calculations. This study has incorporated machine learning methods for the first time to provide an efficient high-throughput screening method for selective C-N coupling electrocatalysts, which could be extended to a wider range of electrocatalytic reactions to facilitate green chemical production.

11.
J Am Chem Soc ; 145(9): 5384-5392, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809916

RESUMO

Sulfur-based aqueous zinc batteries (SZBs) attract increasing interest due to their integrated high capacity, competitive energy density, and low cost. However, the hardly reported anodic polarization seriously deteriorates the lifespan and energy density of SZBs at a high current density. Here, we develop an integrated acid-assisted confined self-assembly method (ACSA) to elaborate a two-dimensional (2D) mesoporous zincophilic sieve (2DZS) as the kinetic interface. The as-prepared 2DZS interface presents a unique 2D nanosheet morphology with abundant zincophilic sites, hydrophobic properties, and small-sized mesopores. Therefore, the 2DZS interface plays a bifunctional role in reducing the nucleation and plateau overpotential: (a) accelerating the Zn2+ diffusion kinetics through the opened zincophilic channels and (b) inhibiting the kinetic competition of hydrogen evolution and dendrite growth via the significant solvation-sheath sieving effect. Therefore, the anodic polarization is reduced to 48 mV at 20 mA cm-2, and the full-battery polarization is reduced to 42% of an unmodified SZB. As a result, an ultrahigh energy density of 866 Wh kgsulfur-1 at 1 A g-1 and a long lifespan of 10,000 cycles at a high rate of 8 A g-1 are achieved.

12.
J Am Chem Soc ; 145(28): 15565-15571, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395649

RESUMO

Ethylene oxidation to oxygenates via electrocatalysis is practically promising because of less energy input and CO2 output compared with traditional thermal catalysis. However, current ethylene electrooxidation reaction (EOR) is limited to alkaline and neutral electrolytes to produce acetaldehyde and ethylene glycol, significantly limiting cell energy efficiency. Here, we report for the first time an EOR to 2-chloroethanol product in a strongly acidic environment with natural seawater as an electrolyte. We demonstrate a 2-chloroethanol Faradaic efficiency (FE) of ∼70% with a low electrical energy consumption of ∼1.52 × 10-3 kWh g-1 over a commercial Pd catalyst. We establish a mechanism to evidence that 2-chloroethanol is produced at low potentials via direct interaction of adsorbed chloride anions (*Cl) with ethylene reactant because of the high coverage of *Cl during reaction. Importantly, this differs from the accepted multiple step mechanism of subsequent chlorine oxidation and ethylene chlorination reactions at high potentials. With highly active Cl- participation, the production rate for 2-chloroethanol in acidic seawater is a high 26.3 g m-2 h-1 at 1.6 V operation. Significantly, we show that this is 223 times greater than that for ethylene glycol generation in acidic freshwater. We demonstrate chloride-participated EOR in a proton exchange membrane electrolyzer that exhibits a 68% FE for 2-chloroethanol at 2.2 V operation in acidic seawater. This new understanding can be used for designing selective anode oxidation reactions in seawater under mild conditions.

13.
J Am Chem Soc ; 145(11): 6410-6419, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913199

RESUMO

Sustainable conversion of plastic waste to mitigate environmental threats and reclaim waste value is important. Ambient-condition photoreforming is practically attractive to convert waste to hydrogen (H2); however, it has poor performance because of mutual constraint between proton reduction and substrate oxidation. Here, we realize a cooperative photoredox using defect-rich chalcogenide nanosheet-coupled photocatalysts, e.g., d-NiPS3/CdS, to give an ultrahigh H2 evolution of ∼40 mmol gcat-1 h-1 and organic acid yield up to 78 µmol within 9 h, together with excellent stability beyond 100 h in photoreforming of commercial waste plastic poly(lactic acid) and poly(ethylene terephthalate). Significantly, these metrics represent one of the most efficient plastic photoreforming reported. In situ ultrafast spectroscopic studies confirm a charge transfer-mediated reaction mechanism in which d-NiPS3 rapidly extracts electrons from CdS to boost H2 evolution, favoring hole-dominated substrate oxidation to improve overall efficiency. This work opens practical avenues for converting plastic waste into fuels and chemicals.

14.
J Am Chem Soc ; 145(26): 14335-14344, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37342888

RESUMO

Design for highly selective catalysts for CO2 electroreduction to multicarbon (C2+) fuels is pressing and important. There is, however, presently a poor understanding of selectivity toward C2+ species. Here we report for the first time a method of judiciously combined quantum chemical computations, artificial-intelligence (AI) clustering, and experiment for development of a model for the relationship between C2+ product selectivity and composition of oxidized Cu-based catalysts. We 1) evidence that the oxidized Cu surface more significantly facilitates C-C coupling, 2) confirm the critical potential condition(s) for this oxidation state under different metal doping components via ab initio thermodynamics computation, 3) establish an inverted-volcano relationship between experimental Faradaic efficiency and critical potential using multidimensional scaling (MDS) results based on physical properties of dopant elements, and 4) demonstrate design for electrocatalysts to selectively generate C2+ product(s) through a co-doping strategy of early and late transition metals. We conclude that a combination of theoretical computation, AI clustering, and experiment can be used to practically establish relationships between descriptors and selectivity for complex reactions. Findings will benefit researchers in designing electroreduction conversions of CO2 to multicarbon C2+ products.

15.
Small ; 19(45): e2303428, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434078

RESUMO

Obtaining partial methane oxidation reaction (MOR) with various oxygenates via a mild electrochemical method is practically difficult because of activation of stable C─H bond and consequent reaction pathway regulation. Here, a real-time tandem MOR with cascaded plasma and electrocatalysis to activate and convert the methane (CH4 ) synergistically is reported for the first time. Boosted CH4 conversion is demonstrated toward value-added products including, alcohols, carboxylates, and ketone via use of commercial Pd-based electrocatalysts. Compared with hash industrial processes, a mild condition, that is, anode potential < 1.0 V versus RHE (reversible hydrogen electrode) is used that mitigates overoxidation of oxygenates and obviates competing reaction(s). One evidence that Pd(II) sites and surface adsorbed hydroxyls are important in facilitating activated-CH4 species conversion, and establish a reaction mechanism for conversion(s) that involves coupling reactions between adsorbed hydroxyls, carbon monoxide and C1 /C2 alkyls. One conclude that pre-activation is important in boosting electrochemical partial MOR under mild conditions and will be of benefit in the development of sustainable CH4 conversion technology.

16.
Angew Chem Int Ed Engl ; 62(9): e202216383, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36509704

RESUMO

The design of heterogeneous catalysts is necessarily surface-focused, generally achieved via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure the adsorption energy is physically meaningful is the stable existence of the conceived active-site structure on the surface. The development of improved understanding of the catalyst surface, however, is challenging practically because of the complex nature of dynamic surface formation and evolution under in-situ reactions. We propose therefore data-driven machine-learning (ML) approaches as a solution. In this Minireview we summarize recent progress in using machine-learning to search and predict (meta)stable structures, assist operando simulation under reaction conditions and micro-environments, and critically analyze experimental characterization data. We conclude that ML will become the new norm to lower costs associated with discovery and design of optimal heterogeneous catalysts.

17.
Angew Chem Int Ed Engl ; 62(17): e202301570, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850048

RESUMO

Zn electrodes in aqueous media exhibit an unstable Zn/electrolyte interface due to severe parasitic reactions and dendrite formation. Here, a dynamic Zn interface modulation based on the molecular switch strategy is reported by hiring γ-butyrolactone (GBL) in ZnCl2 /H2 O electrolyte. During Zn plating, the increased interfacial alkalinity triggers molecular switch from GBL to γ-hydroxybutyrate (GHB). GHB strongly anchors on Zn surface via triple Zn-O bonding, leading to suppressive hydrogen evolution and texture-regulated Zn morphology. Upon Zn stripping, the fluctuant pH turns the molecular switch reaction off through the cyclization of GHB to GBL. This dynamic molecular switch strategy enables high Zn reversibility with Coulombic efficiency of 99.8 % and Zn||iodine batteries with high-cyclability under high Zn depth of discharge (50 %). This study demonstrates the importance of dynamic modulation for Zn electrode and realizes the reversible molecular switch strategy to enhance its reversibility.

18.
Angew Chem Int Ed Engl ; 62(22): e202301681, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975137

RESUMO

Improving kinetics of solid-state sulfide conversion in sulfur cathodes can enhance sulfur utilization of metal-sulfur batteries. However, fundamental understanding of the solid-state conversion remains to be achieved. Here, taking potassium-sulfur batteries as a model system, we for the first time report the reducing overpotential of solid-state sulfide conversion via the meta-stable S3 2- intermediates on transition metal single-atom sulfur hosts. The catalytic sulfur host containing Cu single atoms demonstrates high capacities of 1595 and 1226 mAh g-1 at current densities of 335 and 1675 mA g-1 , respectively, with stable Coulombic efficiency of ≈100 %. Combined spectroscopic characterizations and theoretical computations reveal that the relatively weak Cu-S bonding results in low overpotential of solid-state sulfide conversion and high sulfur utilization. The elucidation of solid-state sulfide conversion mechanism can direct the exploration of highly efficient metal-sulfur batteries.

19.
Angew Chem Int Ed Engl ; 62(39): e202310284, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37548518

RESUMO

As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2 /Zn(CF3 SO3 )2 /Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4 -based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple -OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3 SO3 )2 /Zn(TFSI)2 -based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1 C and 91.4 % capacity remaining under 20 C. After scaling up to the pouch cell with a record mass loading of 33.3 mg cm-2 , super-high-capacity retention of 96.7 % is achieved after 500 cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design.

20.
Angew Chem Int Ed Engl ; 62(46): e202311674, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37711095

RESUMO

A highly selective and durable oxygen evolution reaction (OER) electrocatalyst is the bottleneck for direct seawater splitting because of side reactions primarily caused by chloride ions (Cl- ). Most studies about OER catalysts in seawater focus on the repulsion of the Cl- to reduce its negative effects. Herein, we demonstrate that the absorption of Cl- on the specific site of a popular OER electrocatalyst, nickel-iron layered double hydroxide (NiFe LDH), does not have a significant negative impact; rather, it is beneficial for its activity and stability enhancement in natural seawater. A set of in situ characterization techniques reveals that the adsorption of Cl- on the desired Fe site suppresses Fe leaching, and creates more OER-active Ni sites, improving the catalyst's long-term stability and activity simultaneously. Therefore, we achieve direct alkaline seawater electrolysis for the very first time on a commercial-scale alkaline electrolyser (AE, 120 cm2 electrode area) using the NiFe LDH anode. The new alkaline seawater electrolyser exhibits a reduction in electricity consumption by 20.7 % compared to the alkaline purified water-based AE using commercial Ni catalyst, achieving excellent durability for 100 h at 200 mA cm-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA