Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(7): e23069, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411647

RESUMO

Paternal nicotine exposure can cause a phenotypic change in offspring. To study whether paternal nicotine exposure influences acute liver injury and repair of the offspring, we established a paternal nicotine exposure model in mice and treated the offspring mice with carbon tetrachloride (CCl4 ) to induce acute liver injury. After the treatment of CCl4 , the levels of alanine aminotransferase and aspartate aminotransferase in offspring serum of paternal nicotine exposed mice are about 37.44%, and 30.21% lower than the control mice, respectively. Transcription profiling screen and bioinformatics analysis of differently expressed genes in F1 mice liver revealed that the Wnt pathway was altered. The results demonstrate that nicotine exposure in male mice could enhance the activation of the Wnt pathway in F1 mice liver. The Wnt pathway facilitates cell proliferation and tissue repair. In conclusion, our findings showed that nicotine exposure of male mice protects hepatic against CCl4 -induced acute injury in offspring by activating the Wnt pathway in the F1 liver.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Alanina Transaminase , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/metabolismo , Masculino , Camundongos , Nicotina/toxicidade
2.
Biochem Biophys Res Commun ; 510(1): 1-7, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30683315

RESUMO

Nicotine, the main toxic substance in cigarette smoke, significantly reduced the differentiation and maturation ratio of Leydig cell in murine testes. To investigate the underlying mechanism, C57BL/6J mice were divided into control (CT) and nicotine treated (NT) groups. Next generation RNA sequencing and bio-informatics analysis were carried out to analysis the effects of nicotine on the RNA profile of Leydig cells. Expression level of 7 pathways remarkably changed after nicotine treatment. As the positive regulating pathway of Leydig cell differentiation, Hedgehog signaling pathway was found among these pathways. PTCH1 and ß-TrCP were down-regulated in nicotine treated mice Leydig cells, while GSK3ß, Gli2 and Gli2 fragments increased significantly. Nicotine stimulated the destabilization of Gli2 via ß-TrCP induced ubiquitination and degradation. Gli2 was phosphorylated by up-expressed GSK3ß during this process. Destabilization of Gli2 reduced the activation rate of target genes of Hedgehog signaling pathway such as Ptch1. The differentiation of Leydig cell positively regulated by Hh pathway was thus inhibited by nicotine exposure. Consequently, the male reproduction process powered by Leydic cell-mediated androgen secretion was thus influenced. In conclusion, we find that nicotine inhibits murine Leydig cell differentiation and maturation via regulating Hedgehog signal pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Células Intersticiais do Testículo/patologia , Nicotina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Reprodução/efeitos dos fármacos
3.
BMC Complement Altern Med ; 19(1): 264, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590658

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative disease of synovial joints caused by inflammation. Acteoside (ACT), a major component and lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha, has been reported to regulate the inflammation and immune response. The study aims to investigate the effects of ACT on inflammatory responses and joint protection in OA rats. METHODS: Cell proliferation was examined by MTT and colony formation assay. Apoptosis was analyzed using flow cytometry with Annexin V/PI staining. ELISA was employed to examine the concentration of inflammatory cytokines. OA rat model was established by surgery stimulation. RESULTS: ACT treatment significantly inhibited the upregulation of inflammatory cytokines induced by IL-1ß in primary chondrocytes, including IL-6, IL-12, TNF-α and IFN-γ. ACT stimulation also enhanced the cell proliferation, while inhibited cell apoptosis in IL-1ß-treated chondrocytes. Consistently, ACT treatment led to downregulation of cleaved-caspase-3 and apoptosis regulator Bax, and upregulation of Bcl-2. Furthermore, ACT treatment inhibited IL-1ß-induced activation of JAK/STAT pathway. The results were confirmed in surgery-induced OA rat model. Moreover, ACT treatment significantly inhibited synovial inflammation and articular chondrocyte apoptosis in OA rats. CONCLUSION: Our findings indicate that ACT has the potential therapeutic effect on OA through inhibiting the inflammatory responses via inactivating JAK/STAT signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Glucosídeos/administração & dosagem , Ligustrum/química , Osteoartrite/tratamento farmacológico , Fenóis/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Condrócitos , Modelos Animais de Doenças , Humanos , Interferon gama/genética , Interferon gama/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Masculino , Osteoartrite/genética , Osteoartrite/imunologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Clin Sci (Lond) ; 131(7): 595-607, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130436

RESUMO

The aim of the present study was to evaluate oxytocin and benign prostatic hyperplasia (BPH), and study the cell signalling mechanism. Investigation was performed in patients about the correlation between oxytocin level and BPH. Mice were injected with oxytocin or oxytocin antagonist for 2 weeks and the prostate morphology was studied after their sacrifice. Furthermore, in vitro experiments were performed to evaluate the oxytocin effect through the MEK/ERK/RSK pathway. Oxytocin was significantly elevated in the serum and prostate tissue of patients with BPH, and a positive correlation with prostate volume indicated. In the animal experiments, prostate enlargement was observed in the oxytocin-treated group, whereas oxytocin antagonist reduced prostate hyperplasia. The in vitro study confirmed this result and also revealed activation of the MEK/ERK/RSK pathway. Oxytocin is highly expressed in the serum and prostate tissue of patients with BPH. In addition, oxytocin aggravates BPH and the oxytocin-induced proliferative effect on prostatic cells is mediated through the MEK/ERK/RSK pathway, at least partly. Thus, the hypothalamic regulation may be involved in development of BPH, which may open a new door to more medications for BPH in the future.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Ocitocina/fisiologia , Hiperplasia Prostática/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Ocitocina/farmacologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Estudos Retrospectivos , Células Estromais/efeitos dos fármacos , Células Estromais/patologia
5.
ACS Nano ; 18(10): 7504-7520, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412232

RESUMO

The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Exossomos/metabolismo , Diferenciação Celular/genética , Porosidade , Fosfatidilinositol 3-Quinases , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Regeneração Óssea/fisiologia , Osteogênese , Impressão Tridimensional
6.
ACS Appl Mater Interfaces ; 14(28): 31655-31666, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35797478

RESUMO

Physiologically relevant electrical microenvironments play an indispensable role in manipulating bone metabolism. Although implanted biomaterials that simulate the electrical properties of natural tissues using conductive or piezoelectric materials have been introduced in the field of bone regeneration, the application of electret materials to provide stable and persistent electrical stimulation has rarely been studied in biomaterial design. In this study, a silicon dioxide electret-incorporated poly(dimethylsiloxane) (SiO2/PDMS) composite electroactive membrane was designed and fabricated to explore its bone regeneration efficacy. SiO2 electrets were homogeneously dispersed in the PDMS matrix, and sandwich-like composite membranes were fabricated using a facile layer-by-layer blade-coating method. Following the encapsulation, electret polarization was conducted to obtain the electreted composite membranes. The surface potential of the composite membrane could be adjusted to a bone-promotive biopotential by tuning the electret concentration, and the prepared membranes exhibited favorable electrical stability during an observation period of up to 42 days. In vitro biological experiments indicated that the electreted SiO2/PDMS membrane promoted cellular activity and osteogenic differentiation of mesenchymal stem cells. In vivo, the electreted composite membrane remarkably facilitated bone regeneration through persistent endogenous electrical stimulation. These findings suggest that the electreted sandwich-like membranes, which maintain a stable and physiological electrical microenvironment, are promising candidates for enhancing bone regeneration.


Assuntos
Osteogênese , Dióxido de Silício , Materiais Biocompatíveis , Regeneração Óssea , Diferenciação Celular , Estimulação Elétrica , Alicerces Teciduais
7.
Front Bioeng Biotechnol ; 9: 629270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277578

RESUMO

Tissue engineering technology has made major advances with respect to the repair of injured tissues, for which scaffolds and cells are key factors. However, there are still some issues with respect to the relationship between scaffold and cell growth parameters, especially that between the pore size and cells. In this study, we prepared scaffolds with different pore sizes by melt electrowritten (MEW) and used bone marrow mensenchymal stem cells (BMSCs), chondrocytes (CCs), and tendon stem cells (TCs) to study the effect of the scaffold pore size on cell adhesion, proliferation, and differentiation. It was evident that different cells demonstrated different adhesion and proliferation rates on the scaffold. Furthermore, different cell types showed differential preferences for scaffold pore sizes, as evidenced by variations in cell viability. The pore size also affected the differentiation and gene expression pattern of cells. Among the tested cells, BMSCs exhibited the greatest viability on the 200-µm-pore-size scaffold, CCs on the 200- and 100-µm scaffold, and TCs on the 300-µm scaffold. The scaffolds with 100- and 200-µm pore sizes induced a significantly higher proliferation, chondrogenic gene expression, and cartilage-like matrix deposition after in vitro culture relative to the scaffolds with smaller or large pore sizes (especially 50 and 400 µm). Taken together, these results show that the architecture of 10 layers of MEW scaffolds for different tissues should be different and that the pore size is critical for the development of advanced tissue engineering strategies for tissue repair.

8.
Bioact Mater ; 6(1): 179-190, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32913927

RESUMO

Regeneration of Intervertebral disc (IVD) is a scientific challenge because of the complex structure and composition of tissue, as well as the difficulty in achieving bionic function. Here, an anatomically correct IVD scaffold composed of biomaterials, cells, and growth factors were fabricated via three-dimensional (3D) bioprinting technology. Connective tissue growth factor (CTGF) and transforming growth factor-ß3 (TGF-ß3) were loaded onto polydopamine nanoparticles, which were mixed with bone marrow mesenchymal stem cells (BMSCs) for regenerating and simulating the structure and function of the nucleus pulposus and annular fibrosus. In vitro experiments confirmed that CTGF and TGF-ß3 could be released from the IVD scaffold in a spatially controlled manner, and induced the corresponding BMSCs to differentiate into nucleus pulposus like cells and annulus fibrosus like cells. Next, the fabricated IVD scaffold was implanted into the dorsum subcutaneous of nude mice. The reconstructed IVD exhibited a zone-specific matrix that displayed the corresponding histological and immunological phenotypes: primarily type II collagen and glycosaminoglycan in the core zone, and type I collagen in the surrounding zone. The testing results demonstrated that it exhibited good biomechanical function of the reconstructed IVD. The results presented herein reveal the clinical application potential of the dual growth factors-releasing IVD scaffold fabricated via 3D bioprinting. However, the evaluation in large mammal animal models needs to be further studied.

9.
Biomaterials ; 276: 120997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229243

RESUMO

Implantable self-powered generators (ISPGs) have been extensively explored as energy supplies for driving electronics and electrically stimulated therapeutics in vivo. However, some drawbacks arise, such as complicated architectonics, inescapability of wire connection, energy instability, and consumption. In this study, a host-coupling bio-nanogenerator (HCBG) is developed to configure a self-powered regional electrical environment for powerful bone regeneration. An HCBG consists of a porous electret nanofiber mat coupled with interstitial fluid and stimulated objects of the host after implantation, forming a host coupling effect. This bio-nanogenerator not only overcomes the disadvantages of general ISPGs, but also accomplishes both biomechanical energy scavenging and electrical stimulation therapeutics. The enhancement of osteogenesis differentiation of bone marrow mesenchymal stem cells in vitro and bone regeneration in vivo are remarkably achieved. Moreover, osteogenic ability is systematically evaluated by regulating the electrical performance of HCBGs. Osteogenic differentiation is activated by upregulating more cytosolic calcium ion, following to activate the calcium ion-induced osteogenic signal pathway, while applying electrical stimulation. As an implantable medical technology, the HCBG provides an explorative insight to facilitate the development of ISPG-based electrical medical therapeutics.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Eletricidade
10.
Bioact Mater ; 6(7): 2173-2186, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33511315

RESUMO

Articular cartilage injury is a common disease in the field of orthopedics. Because cartilage has poor self-repairing ability, medical intervention is needed. Using melt electro-writing (MEW) technology, tissue engineering scaffolds with high porosity and high precision can be prepared. However, ordinary materials, especially natural polymer materials, are difficult to print. In this study, gelatin was mixed with poly (lactic-co-glycolic acid) to prepare high-concentration and high-viscosity printer ink, which had good printability and formability. A composite scaffold with full-layer TGF-ß1 loading mixed with hydroxyapatite was prepared, and the scaffold was implanted at the cartilage injury site; microfracture surgery was conducted to induce the mesenchyme in the bone marrow. Quality stem cells thereby promoted the repair of damaged cartilage. In summary, this study developed a novel printing method, explored the molding conditions based on MEW printing ink, and constructed a bioactive cartilage repair scaffold. The scaffold can use autologous bone marrow mesenchymal stem cells and induce their differentiation to promote cartilage repair.

11.
Toxicol Lett ; 343: 44-55, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640489

RESUMO

Paternal nicotine exposure can alter phenotypes in future generations. The aim of this study is to explore whether paternal nicotine exposure affects the hepatic repair to chronic injury which leads to hepatic fibrosis in offspring. Our results demonstrate that nicotine down regulates mmu-miR-15b expression via the hyper-methylation on its CpG island shore region in the spermatozoa. This epigenetic modification imprinted in the liver of the offspring. The decreased mmu-miR-15b promotes the expression of Wnt4 and activates the Wnt pathway in the offspring mice liver. The activation of the Wnt pathway improves the activation and proliferation of hepatic stellate cells (HSCs) leading to liver fibrosis. Moreover, the Wnt pathway promotes the activation of the TGF-ß pathway and the two pathways cooperate to promote the transcription of extracellular matrix (ECM) genes. In conclusion, this study found that nicotine promotes hepatic fibrosis in the offspring via the activation of Wnt pathway by imprinting the hyper-methylation of mmu-miR-15b.


Assuntos
Cirrose Hepática/induzido quimicamente , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Exposição Paterna , Animais , Regulação para Baixo , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
12.
Biomaterials ; 266: 120385, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120203

RESUMO

Despite significant advances in osteochondral tissue engineering, it remains challenging to successfully reconstruct native-like complex tissues organized in three-dimension with spatially varying compositional, structural and functional properties. In this contribution, inspired by the gradients in extracellular matrix (ECM) composition and collagen fiber architecture in native osteochondral tissue, we designed and fabricated a tri-layered (superficial cartilage (S), deep cartilage (D) and subchondral bone (B) layer) stratified scaffold in which a mesenchymal stem cell (MSC)-laden gelatin methacrylamide (GelMA) hydrogel with zone-specific growth factor delivery was combined with melt electrowritten triblock polymer of poly(ε-caprolactone) and poly(ethylene glycol) (PCEC) networks with depth-dependent fiber organization. Introducing PCEC fibers into the weak GelMA hydrogel contributed to a significant increase in mechanical strength. In vitro biological experiments indicated that the stratified fiber-reinforced and growth factor-loaded hydrogel construct induced the MSCs to differentiate down both the chondrogenic and osteogenic lineages and that the engineered complex exhibited cellular phenotype and matrix accumulation profiles resembling those of the native tissue. Simultaneous cartilage and subchondral bone regeneration were achieved in vivo by using the tri-layered integrated scaffold. More importantly, the inclusion of the S layer could impart the regenerated cartilage with a more lubricating and wear-resistant surface. These findings suggest that the bioinspired construct mimicking the spatial variations of native osteochondral tissue might serve as a promising candidate to enhance osteochondral regeneration.


Assuntos
Hidrogéis , Alicerces Teciduais , Cartilagem , Condrogênese , Engenharia Tecidual
13.
Adv Healthc Mater ; 10(2): e2000573, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166086

RESUMO

Osteosarcoma is the most primary type of bone tumor occurring in the pediatric and adolescent age groups. In order to obtain the most appropriate prognosis, both tumor recurrence inhibition and bone repair promotion are required. In this study, a ternary nanoscale biomaterial/antitumor drug complex including hydroxyapatite (HA), bovine serum albumin (BSA) and paclitaxel (PTX) is prepared for post-surgical cancer treatment of osteosarcoma in situ. The HA-BSA-PTX nanoparticles, about 55 nm in diameter with drug loading efficiency (32.17 wt%), have sustained release properties of PTX and calcium ions (Ca2+ ) and low cytotoxicity to human fetal osteoblastic (hFOB 1.19) cells in vitro. However, for osteosarcoma (143B) cells, the proliferation, migration, and invasion ability are significantly inhibited. The in situ osteosarcoma model studies demonstrate that HA-BSA-PTX nanoparticles have significant anticancer effects and can effectively inhibit tumor metastasis. Meanwhile, the detection of alkaline phosphatase activity, calcium deposition, and reverse transcription-polymerase chain reaction proves that the HA-BSA-PTX nanoparticles can promote the osteogenic differentiation. Therefore, the HA-BSA-PTX nanodrug delivery system combined with sustained drug release, antitumor, and osteogenesis effects is a promising agent for osteosarcoma adjuvant therapy.


Assuntos
Nanopartículas , Osteossarcoma , Adolescente , Linhagem Celular Tumoral , Criança , Portadores de Fármacos , Durapatita , Humanos , Osteogênese , Osteossarcoma/tratamento farmacológico , Paclitaxel/farmacologia , Soroalbumina Bovina
14.
Biomaterials ; 274: 120841, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984633

RESUMO

Mesenchymal stem cells (MSCs) secrete paracrine trophic factors that are beneficial for tissue regeneration. In this study, a sponge-like scaffold with hierarchical and interconnected pores was developed using low-temperature deposition modeling (LDM) printing. Its effects on the cellular behavior, especially on the paracrine secretion patterns of MSCs, were comprehensively investigated. We found that compared with the scaffolds printed via the fused deposition modeling (FDM) technique, the LDM-printed sponges enhanced the adhesion, retention, survival, and ingrowth of MSCs and promoted cell-material interactions. Moreover, the paracrine functions of the cultured MSCs on the LDM-printed sponges were improved, with significant secretion of upregulated immunomodulatory, angiogenic, and osteogenic factors. MSCs on the LDM-printed sponges exert beneficial paracrine effects on multiple regenerative processes, including macrophage polarization, tube formation, and osteogenesis, verifying the enhanced immunomodulatory, angiogenic, and osteogenic potential. Further protein function assays indicated that focal adhesion kinase (FAK), downstream AKT, and yes-associated-protein (YAP) signaling might participate in the required mechanotransductive pathways, through which the hierarchical porous structures stimulated the paracrine effects of MSCs. In a rat distal femoral defect model, the MSC-laden LDM-printed sponges significantly promoted vascularized bone regeneration. The results of the present study demonstrate that the hierarchical porous biomimetic sponges prepared via LDM printing have potential applications in tissue engineering based on their cell-material interaction promotion and MSC paracrine function modulation effects. Furthermore, our findings suggest that the optimization of biomaterial properties to direct the paracrine signaling of MSCs would enhance tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Diferenciação Celular , Osteogênese , Porosidade , Ratos , Temperatura , Engenharia Tecidual , Alicerces Teciduais
15.
Theranostics ; 10(22): 10214-10230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929344

RESUMO

Rationale: Articular cartilage injury is quite common. However, post-injury cartilage repair is challenging and often requires medical intervention, which can be aided by 3D printed tissue engineering scaffolds. Specifically, the high accuracy of Melt Electro-Writing (MEW) technology facilitates the printing of scaffolds that imitate the structure and composition of natural cartilage to promote repair. Methods: MEW and Inkjet printing technology was employed to manufacture a composite scaffold that was then implanted into a cartilage injury site through microfracture surgery. While printing polycaprolactone (PCL) or PCL/hydroxyapatite (HA) scaffolds, cytokine-containing microspheres were sprayed alternately to form multiple layers containing transforming growth factor-ß1 and bone morphogenetic protein-7 (surface layer), insulin-like growth factor-1 (middle layer), and HA (deep layer). Results: The composite biological scaffold was conducive to adhesion, proliferation, and differentiation of mesenchymal stem cells recruited from the bone marrow and blood. Meanwhile, the environmental differences between the scaffold's layers contributed to the regional heterogeneity of chondrocytes and secreted proteins to promote functional cartilage regeneration. The biological effect of the composite scaffold was validated both in vitro and in vivo. Conclusion: A cartilage repair scaffold was established with high precision as well as promising mechanical and biological properties. This scaffold can promote the repair of cartilage injury by using, and inducing the differentiation and expression of, autologous bone marrow mesenchymal stem cells.


Assuntos
Doenças das Cartilagens/tratamento farmacológico , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Medula Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Durapatita/química , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Poliésteres/química , Impressão Tridimensional , Coelhos , Regeneração/efeitos dos fármacos
16.
Acta Biomater ; 118: 83-99, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853801

RESUMO

The guided bone regeneration (GBR) concept has been extensively utilized to treat maxillofacial bone defects in clinical practice. However, the repair efficacy of currently available GBR membranes is often compromised by their limited bone regeneration potential and deficient antibacterial activity. In this study, inspired by the bi-layered structure design of the commonly used Bio-GideⓇmembrane, we designed and fabricated a new kind of multifunctional bi-layered "GBR scaffold" combining solution electrospinning writing (SEW) and solution electrospinning (SES) techniques using a single SEW printer. Copper-loaded mesoporous silica nanoparticles (Cu@MSNs) were incorporated into the poly(lactic-co-glycolic acid)/gelatin (PLGA/Gel, denoted as PG) fiber matrix to construct a composite PG-Cu@MSNs fibrous scaffold. The obtained GBR scaffold consisted of a loose and porous SEW layer to support and facilitate bone ingrowth, and a dense and compact SES layer to resist non-osteoblast interference. The resulting enhanced mechanical properties, coordinated degradation profile, and facile preparation procedure imparted the composite scaffold with good clinical feasibility. In vitro biological experiments indicate that the PG-Cu@MSNs composite scaffold exhibited favorable osteogenic and antibacterial properties. Furthermore, an in vivo rat periodontal defect model further confirmed the promising bone regeneration efficacy of the PG-Cu@MSNs scaffold. In conclusion, the developed electrowritten Cu@MSNs-incorporated bi-layered scaffold with hierarchical architecture and concurrent osteogenic and antibacterial functions may hold great potential for application in GBR.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Gelatina , Porosidade , Ratos , Dióxido de Silício , Alicerces Teciduais
17.
Regen Med ; 15(1): 1193-1214, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043426

RESUMO

Aim: This study aimed to preliminarily evaluate the safety and efficacy of human adipose-derived mesenchymal progenitor cells (haMPCs) in combination with microfracture and hyaluronic acid (HA) for treating cartilage defects. Materials & methods: A total of 30 patients with medial femoro-tibial condylar cartilage defects were randomized into three groups: arthroscopic microfracture group and normal saline injection, arthroscopic microfracture and intra-articular injection of HA, or arthroscopic microfracture in combination with intra-articular injection of HA and haMPCs. Results & conclusions: The data demonstrated that intra-articular injection of haMPCs plus microfracture and HA is a safe procedure to improve joint function in patients with knee cartilage defects. These findings provide an impetus for future research on this treatment. ClinicalTrials.gov Identifier: NCT02855073.


Assuntos
Cartilagem Articular/citologia , Fraturas de Estresse/terapia , Ácido Hialurônico/química , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoartrite do Joelho/terapia , Idoso , Cartilagem Articular/lesões , Feminino , Fraturas de Estresse/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Método Simples-Cego , Transplante Autólogo , Resultado do Tratamento
18.
Theranostics ; 10(6): 2538-2552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194818

RESUMO

Purpose: One of the essential requirements in maintaining the normal joint motor function is the perfect tribological property of the articular cartilage. Many cartilage regeneration strategies have been developed for treatment in early stages of osteoarthritis, but there is little information on how repaired articular cartilage regains durability. The identification of biomarkers that can predict wear resistant property is critical to advancing the success of cartilage regeneration therapies. Proteoglycan 4 (PRG4) is a macromolecule distributing on the chondrocyte surface that contributes to lubrication. In this study, we investigate if PRG4 expression is associated with tribological properties of regenerated cartilage, and is able to predict its wear resistant status. Methods: Two different strategies including bone marrow enrichment plus microfracture (B/BME-MFX) and microfracture alone (B-MFX) of cartilage repair in sheep were used. PRG4 expression and a series of tribological parameters on regenerated cartilage were rigorously examined and compared. Results: Highly and continuously expression of PRG4 in regenerated cartilage surface was negatively correlated with each tribological parameter (P<0.0001, respectively). Multivariate analysis showed that PRG4 expression was the key predictor that contributed to the promotion of cartilage wear resistance. Conclusion: Higher PRG4 expression in regenerated cartilage is significantly associated with wear resistance improvement. PRG4 may be useful for predicting the wear resistant status of regenerated cartilage and determining the optimal cartilage repair strategy.


Assuntos
Cartilagem Articular/patologia , Proteoglicanas/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Condrócitos/metabolismo , Humanos , Masculino , Análise Multivariada , Ovinos , Líquido Sinovial/metabolismo
19.
J Med Chem ; 63(15): 8003-8024, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32255358

RESUMO

Most of the biomedical materials printed using 3D bioprinting are static and are unable to alter/transform with dynamic changes in the internal environment of the body. The emergence of four-dimensional (4D) printing addresses this problem. By preprogramming dynamic polymer materials and their nanocomposites, 4D printing is able to produce the desired shapes or transform functions under specific conditions or stimuli to better adapt to the surrounding environment. In this review, the current and potential applications of 4D-printed materials are introduced in different aspects of the biomedical field, e.g., tissue engineering, drug delivery, and sensors. In addition, the existing limitations and possible solutions are discussed. Finally, the current limitations of 4D-printed materials along with their future perspective are presented to provide a basis for future research.


Assuntos
Materiais Biocompatíveis/química , Tecnologia Biomédica/métodos , Bioimpressão/métodos , Engenharia Tecidual/métodos , Animais , Tecnologia Biomédica/tendências , Bioimpressão/tendências , Previsões , Humanos , Impressão Tridimensional/tendências , Engenharia Tecidual/tendências
20.
Data Brief ; 24: 103825, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31008156

RESUMO

Data provided in this article is RNA profile represented in RPKM and RPKM based TPM value for the research article titled Nicotine inhibits Murine Leydig cell differentiation and maturation via regulating Hedgehog signal pathway Jiajie et al., 2019. Nicotine treatment changes the RNA profile of Murine Leydig cells. RNA of 12 control group Leydig cells and 12 nicotine treated Leydig cells are sequenced and the data of 29943 genes are achieved. The information of the gene symbol, gene description, gene type, position and transcript length are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA