RESUMO
Up to date, most studies reported that degradation is worsened in the grassland ecosystems of Inner Mongolia and adjacent regions as a result of intensified grazing. This seems to be scientific when considering the total forage or total above-ground biomass as a degradation indicator, but it does not hold true in terms of soil organic carbon density (SOCD). In this study, we quantified the changes of grassland ecosystem carbon stock in Inner Mongolia and adjacent regions from the 1980s to 2000s and identified the major drivers influencing these variations, using the National Grassland Resource Inventory and Soil Survey Dataset in 1980s and the Inventory data during 2002 to 2009 covering 624 sampling plots concerned vegetal traits and edaphic properties across the study region. The result indicated that the above-, below-ground and total vegetation biomass declined from the 1980s to 2000s by â¼ 10 %. However, total forage production increased by 6.72 % when considering livestock intake. SOCD remained stable despite a 67 % increase in grazing intensity. A generalized linear model (GLIM) analysis suggested that an increase in grazing intensity from the 1980s to 2000s could only explain 1.04 % of the total biomass change, while changes in precipitation and temperature explained 17.7 % (p < 0.05) of total vegetation biomass (TVB) change. Meanwhile, SOCD change during 1980s - 2000s could be explained 10.08 % by the soil texture (p < 0.05) and <1.6 % by changes in climate and livestock. This implies that the impacts of climate change on grassland biomass are more significant than those of grazing utilization, and SOCD was resistant to both climate change and intensified grazing. Overall, intensified grazing did not result in significant negative impacts on the grassland carbon stocks in the study region during the 1980s and 2000s. The grassland ecosystems possess a mechanism to adjust their root-shoot ratio, enabling them to maintain resilience against grazing utilization.
Assuntos
Carbono , Mudança Climática , Pradaria , China , Carbono/análise , Solo/química , Monitoramento Ambiental , Biomassa , EcossistemaRESUMO
Anatomical network analysis (AnNA) is a systems biological framework based on network theory that enables anatomical structural analysis by incorporating modularity to model structural complexity. The human brain and facial structures exhibit close structural and functional relationships, suggestive of a co-evolved anatomical network. The present study aimed to analyze the human head as a modular entity that comprises the central nervous system, including the brain, spinal cord, and craniofacial skeleton. An AnNA model was built using 39 anatomical nodes from the brain, spinal cord, and craniofacial skeleton. The linkages were identified using peripheral nerve supply and direct contact between structures. The Spinglass algorithm in the igraph software was applied to construct a network and identify the modules of the central nervous system-craniofacial skeleton anatomical network. Two modules were identified. These comprised an anterior module, which included the forebrain, anterior cranial base, and upper-middle face, and a posterior module, which included the midbrain, hindbrain, mandible, and posterior cranium. These findings may reflect the genetic and signaling networks that drive the mosaic central nervous system and craniofacial development and offer important systems biology perspectives for developmental disorders of craniofacial structures.
RESUMO
Dromaeosaurids were bird-like dinosaurs with a predatory ecology known to forage on fish, mammals and other dinosaurs. We describe Daurlong wangi gen. et sp. nov., a dromaeosaurid from the Lower Cretaceous Jehol Biota of Inner Mongolia, China. Exceptional preservation in this specimen includes a large bluish layer in the abdomen which represents one of the few occurrences of intestinal remnants among non-avian dinosaurs. Phylogenetically, Daurlong nests among a lineage of short-armed Jehol Biota species closer to eudromaeosaurs than microraptorines. The topographic correspondence between the exceptionally preserved intestine in the more stem-ward Scipionyx and the remnants in the more birdlike Daurlong provides a phylogenetic framework for inferring intestine tract extent in other theropods lacking fossilized visceral tissues. Gastrointestinal organization results conservative among faunivorous dinosaurs, with the evolution of a bird-like alimentary canal restricted to avialan theropods.
Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Filogenia , Fósseis , Evolução Biológica , Aves , Intestinos , MamíferosRESUMO
Background Diagnosis is particularly challenging in concealed or asymptomatic long QT syndrome (LQTS). Provocative testing, unmasking the characterization of LQTS, is a promising alternative method for the diagnosis of LQTS, but without uniform standards. Methods and Results A comprehensive search was conducted in PubMed, Embase, and the Cochrane Library through October 14, 2021. The fixed effects model was used to assess the effect of the provocative testing on QTc interval. A total of 22 studies with 1137 patients with LQTS were included. At baseline, QTc interval was 40 ms longer in patients with LQTS than in controls (mean difference [MD], 40.54 [95% CI, 37.43-43.65]; P<0.001). Compared with the control group, patients with LQTS had 28 ms longer ΔQTc upon standing (MD, 28.82 [95% CI, 23.05-34.58]; P<0.001), nearly 30 ms longer both at peak exercise (MD, 27.31 [95% CI, 21.51-33.11]; P<0.001) and recovery 4 to 5 minutes (MD, 29.85 [95% CI, 24.36-35.35]; P<0.001). With epinephrine infusion, QTc interval was prolonged both in controls and patients with QTS, most obviously in LQT1 (MD, 68.26 [95% CI, 58.91-77.60]; P<0.001) and LQT2 (MD, 60.17 [95% CI, 50.18-70.16]; P<0.001). Subgroup analysis showed QTc interval response to abrupt stand testing and exercise testing varied between LQT1, LQT2, and LQT3, named Type â , Type â ¡, and Type â ¢. Conclusions QTc trend Type â and Type â ¢ during abrupt stand testing and exercise testing can be used to propose a prospective evaluation of LQT1 and LQT3, respectively. Type â ¡ QTc trend combined epinephrine infusion testing could distinguish LQT2 from control. A preliminary diagnostic workflow was proposed but deserves further evaluation.