Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 89(10): 6783-6792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38661714

RESUMO

Tetrazoles and their derivatives are essential for compound synthesis due to their versatility, effectiveness, stability in air, and cost-efficiency. This has stimulated interest in developing techniques for their production. In this work, four compounds, tetrazolo[1,5-c]pyrimidin-5-amine (1), N-(4-azidopyrimidin-2-yl)nitramide (2), tetrazolo[1,5-c]pyrimidin-5(6H)-one (3), and tetrazolo[1,5-a]pyrimidin-5-amine (4), were obtained from commercially available reagents and straightforward synthetic methodologies. These new compounds were characterized by infrared (IR), 13C, and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and single-crystal X-ray diffraction. The solvent, temperature, and electron-donating group (EDG) factors that were responsible for the steering of azido-tetrazole equilibrium in all compounds were also studied. In addition, the detonation performance of the target compounds was calculated by using heats of formation (HOFs) and crystal densities. Hirshfeld surface analysis was used to examine the intermolecular interactions of the four synthesized compounds. The results show that the excellent properties of 1-4 are triggered by ionic bonds, hydrogen bonds, and π-π stacking interactions, indicating that these compounds have the potential to be used in the development of high-performance energetic materials. Additionally, DFT analysis is in support of experimental results, which proved the effect of different factors that can influence the azido-tetrazole equilibrium in the synthesized pyrimidine derivatives in the solution.

2.
Bioorg Chem ; 140: 106822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666111

RESUMO

Pyrimidine which is an important constituent of the genetic material of deoxyribonucleic acid, is identified with a large number of biological activities. Based on this, pyrimidine-derived Schiff bases (1-6) of hydroxy-1-naphthaldehyde were synthesized by using the condensation method. In addition, the molecular docking studies against topoisomerase II DNA gyrase, human hematopoietic cell kinase, urate oxidase from Aspergillus flavus, and cyclin-dependent kinase 8 to explore the antibacterial, antioxidant, antifungal, and anticancer properties respectively and binding affinities through bioinformatics approaches to determine the interaction among active molecules with the receptor. Hence, the computational docking analyses identified that all synthesized pyrimidine Schiff bases (1-6) are active and exhibited better binding affinities as compared to the standard drugs. Furthermore, all the prepared materials were characterized by using nuclear magnetic resonance, infrared, and elemental analysis. Additionally, the phase-transition and thermal decomposition temperatures were determined by differential scanning calorimetry and thermo-gravimetric analysis measurements. Moreover, the structures of pyrimidine-derived Schiff bases 1, 2, 3, 4, and 5 were also confirmed by the X-ray single-crystal diffraction technique. The pyrimidine-derived Schiff bases 5 possess significant antibacterial, antioxidant, antifungal, and anticancer agent properties which confirms its promising biological activities over standard drugs.


Assuntos
Antifúngicos , Antioxidantes , Humanos , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Pirimidinas/farmacologia , Antibacterianos/farmacologia
3.
Angew Chem Int Ed Engl ; 57(34): 10848-10853, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29749675

RESUMO

The development of graphene oxide (GO)-based materials for C-C cross-coupling represents a significant advance in carbocatalysis. Although GO has been used widely in various catalytic reactions, the scope of reactions reported is quite narrow, and the relationships between the type of functional groups present and the specific activity of the GO are not well understood. Herein, we explore CH-CH-type cross-coupling of xanthenes with arenes using GO as real carbocatalysts, and not as stoichiometric reactants. Mechanistic studies involving molecular analogues, as well as trapped intermediates, were carried out to probe the active sites, which were traced to quinone-type functionalities as well as the zigzag edges in GO materials. GO-catalyzed cross-dehydrogenative coupling is operationally simple, shows reusability over multiple cycles, can be conducted in air, and exhibits good functional group tolerance.

4.
Adv Mater ; 36(4): e2304917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37560976

RESUMO

The sustainable and scalable fabrication of low-cost, efficient, and durable electrocatalysts that operate well at industrial-level current density is urgently needed for large-scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N-doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial-level current density of 1000 mA cm-2 at low overpotential of 401 mV. The freestanding binder-free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere-level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost-effective freestanding electrode with monometallic, bimetallic, or trimetallic species based on abundant natural wood resources for water splitting.

5.
ChemSusChem ; 16(17): e202300377, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140478

RESUMO

The development of sustainable and efficient C1 substitution methods is of central interest for organic synthesis and pharmaceuticals production, the methylation motifs bound to a carbon, nitrogen, or oxygen atom widely exist in natural products and top-selling drugs. In the past decades, a number of methods involving green and inexpensive methanol have already been disclosed to replace industrial hazardous and waste-generating C1 source. Among the various efforts, photochemical strategy is considered as a "renewable" alternative that shows great potential to selectively activate methanol to achieve a series of C1 substitutions at mild conditions, typically C/N-methylation, methoxylation, hydroxymethylation, and formylation. Herein the recent advances in selective transformation of methanol to various C1 functional groups via well-designed photochemical systems involving different types of catalysts or not is systematically reviewed. Both the mechanism and corresponding photocatalytic system were discussed and classified on specific methanol activation models. Finally, the major challenges and perspectives are proposed.

6.
Nanomicro Lett ; 16(1): 23, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985523

RESUMO

This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.

7.
Nanoscale ; 13(16): 7792-7800, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33876171

RESUMO

Zeolitic octahedral metal oxides (ZOMOs) are fully inorganic crystalline materials, mostly containing transition metals, and possess a defined framework as well as regular hollow channels. Therefore, they have significant application potential in many fields, particularly catalysis. Herein, we report the synthesis and characterization of zeolitic octahedral niobium oxides (ZOMO-NbOx) and the framework was made of {NbOx} polyhedra ({NbO6} octahedron and {Nb6O27} pentagon units). Microchannels consisting of 7-membered rings with ∼0.4 nm diameter were realized, and rarely reported plural {Nb6O27} units including dimers, trimers, and tetramers were discovered. Owing to the continuous hollow microporous structure that provides a large surface area as well as a shortened transfer path for charge carriers from bulk to the surface, considerably enhanced activities beyond pristine Nb2O5 were achieved towards photocatalytic H2 evolution from (saline) water. The results show a practical case of solo-Nb-based zeolitic materials, which expand the ZOMO family and provide further insights into the design and synthesis of efficient zeolitic semiconductors for artificial photocatalysis.

8.
ChemSusChem ; 14(2): 582-589, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33219740

RESUMO

Photocatalytic water splitting technology (PWST) enables the direct use of water as appealing "liquid hydrogen source" for transfer hydrogenation reactions. Currently, the development of PWST-based transfer hydrogenations is still in an embryonic stage. Previous reports generally centered on the rational utilization of the in situ generated H-source (electrons) for hydrogenations, in which photogenerated holes were quenched by sacrificial reagents. Herein, the fully-utilization of the liquid H-source and holes during water splitting is presented for photo-reductive N-alkylation of nitro-aromatic compounds. In this integrate system, H-species in situ generated from water splitting were designed for nitroarenes reduction to produce amines, while alkanols were oxidized by holes for cascade alkylating of anilines as well as the generated secondary amines. More than 50 examples achieved with a broad range scope validate the universal applicability of this mild and sustainable coupling approach. The synthetic utility of this protocol was further demonstrated by the synthesis of existing pharmaceuticals via selective N-alkylation of amines. This strategy based on the sustainable water splitting technology highlights a significant and promising route for selective synthesis of valuable N-alkylated fine chemicals and pharmaceuticals from nitroarenes and amines with water and alkanols.

9.
ChemSusChem ; 14(16): 3344-3350, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34180144

RESUMO

Booming of photocatalytic water splitting technology (PWST) opens a new avenue for the sustainable synthesis of high-value-added hydrogenated and oxidized fine chemicals, in which the design of efficient semiconductors for the in-situ and synergistic utilization of photogenerated redox centers are key roles. Herein, a porous polymeric carbon nitride (PPCN) with a crystalline backbone was constructed for visible light-induced photocatalytic hydrogen generation by photoexcited electrons, followed by in-situ utilization for olefin hydrogenation. Simultaneously, various alcohols were selectively transformed to valuable aldehydes or ketones by photoexcited holes. The porosity of PPCN provided it with a large surface area and a short transfer path for photogenerated carriers from the bulk to the surface, and the crystalline structure facilitated photogenerated charge transfer and separation, thus enhancing the overall photocatalytic performance. High reactivity and selectivity, good functionality tolerance, and broad reaction scope were achieved by this concerted photocatalysis system. The results contribute to the development of highly efficient semiconductor photocatalysts and synergistic redox reaction systems based on PWST for high-value-added fine chemical production.

10.
Nanoscale ; 13(8): 4444-4450, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586716

RESUMO

The development of cost-effective and high-performance catalysts for the production of hydrogen via electrocatalytic water splitting is crucial for meeting the increasing energy demand and expanding the hydrogen economy. In this study, a series of metal-free carbon nanotube (CNT) catalysts were designed and in situ functionalized by imidazolium ionic liquids (ILs) for enhanced electrocatalytic hydrogen evolution reaction (HER). The theoretical calculations and experimental results reveal that the functionalization of CNTs with imidazolium ILs facilitated the electron transfer process and exhibited superior hydrogen adsorption, thereby enhancing the performance of the HER. In particular, CNT-IM-Cl displays excellent electrocatalytic activity and shows a low onset overpotential and Tafel slope of 80 mV and 38 mV dec-1, respectively. This study highlights the significant potential of IL in situ functionalized metal-free CNTs for the electrocatalytic HER and provides insight into the structure design of highly efficient electrocatalysts.

11.
Sci Bull (Beijing) ; 66(6): 562-569, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654426

RESUMO

Tandem water electrolysis for the transformation of universal feedstock to value-added chemicals integrated with hydrogen generation and in situ utilization is a promising approach to address the economic challenges of electrochemical hydrogen evolution and storage. Herein, we present the controllable electrocatalytic deuteration of halides using inexpensive and reusable heavy water (D2O) as a D-source for the preparation of valuable D-labelled chemicals and pharmaceuticals under mild conditions. This electrochemical deuteration method with high efficiency and selectivity furnishes a series of D-labelled chemicals and pharmaceuticals in high yields with excellent D-incorporation. The reaction efficiency and selectivity, that is, the precise substitution of deuterium atoms at different halogen positions, can be tuned by varying the applied voltages. The results show the great potential of green and economical electrocatalytic methods for producing value-added fine chemicals in addition to hydrogen evolution.

12.
Nat Commun ; 11(1): 4722, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948764

RESUMO

Precisely controlled deuterium labeling at specific sites of N-alkyl drugs is crucial in drug-development as over 50% of the top-selling drugs contain N-alkyl groups, in which it is very challenging to selectively replace protons with deuterium atoms. With the goal of achieving controllable isotope-labeling in N-alkylated amines, we herein rationally design photocatalytic water-splitting to furnish [H] or [D] and isotope alkanol-oxidation by photoexcited electron-hole pairs on a polymeric semiconductor. The controlled installation of N-CH3, -CDH2, -CD2H, -CD3, and -13CH3 groups into pharmaceutical amines thus has been demonstrated by tuning isotopic water and methanol. More than 50 examples with a wide range of functionalities are presented, demonstrating the universal applicability and mildness of this strategy. Gram-scale production has been realized, paving the way for the practical photosynthesis of pharmaceuticals.


Assuntos
Aminas/química , Aminas/metabolismo , Luz , Semicondutores , Alquilação , Aminas/farmacologia , Catálise , Deutério , Oxirredução , Preparações Farmacêuticas , Prótons , Água , Difração de Raios X
13.
ChemSusChem ; 13(4): 756-762, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31840937

RESUMO

Solar-driven H2 evolution is an essential process for sustainable energy development. Currently, the greatest challenge is the development of efficient photocatalysts to drive this reaction, especially in pure water systems (without the use of a sacrificial agent). In this study, structural defects in Zn-Cd-S nanorod photocatalysts are found to increase charge separation efficiency significantly by sevenfold. Efficient H2 evolution (352.7 µmol h-1 g-1 , 100 mg of catalyst) is achieved by using this defective Zn-Cd-S nanorod photocatalyst in the absence of sacrificial agents and precious metal cocatalysts under visible-light irradiation. Thus, this cocatalyst- and sacrificial-agent-free, visible-light-responsive system shows remarkable potential as a new artificial photosynthesis route for green H2 production.

14.
Adv Sci (Weinh) ; 6(1): 1801403, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30643725

RESUMO

In addition to the significance of photocatalytic hydrogen evolution, the utilization of the in situ generated H/D (deuterium) active species from water splitting for artificial photosynthesis of high value-added chemicals is very attractive and promising. Herein, photocatalytic water splitting technology is utilized to generate D-active species (i.e., Dad) that can be stabilized on anchored 2nd metal catalyst and are readily for tandem controllable deuterations of carbon-carbon multibonds to produce high value-added D-labeled chemicals/pharmaceuticals. A highly crystalline K cations intercalated polymeric carbon nitride (KPCN), rationally designed, and fabricated by a solid-template induced growth, is served as an ultraefficient photocatalyst, which shows a greater than 18-fold enhancement in the photocatalytic hydrogen evolution over the bulk PCN. The photocatalytic in situ generated D-species by superior KPCN are utilized for selective deuteration of a variety of alkenes and alkynes by anchored 2nd catalyst, Pd nanoparticles, to produce the corresponding D-labeled chemicals and pharmaceuticals with high yields and D-incorporation. This work highlights the great potential of developing photocatalytic water splitting technology for artificial photosynthesis of value-added chemicals instead of H2 evolution.

15.
Adv Sci (Weinh) ; 5(7): 1800036, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027038

RESUMO

The development of highly active, inexpensive, and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts to replace noble metal Pt and RuO2 catalysts remains a considerable challenge for highly demanded reversible fuel cells and metal-air batteries. Here, a simple approach for the facile construction of a defective nanocarbon material is reported with B and N dopants (B,N-carbon) as a superior bifunctional metal-free catalyst for both ORR and OER. The catalyst is prepared by pyrolyzing the composites of ethyl cellulose and high-boiling point 4-(1-naphthyl)benzeneboronic acid in NH3 atmosphere with an inexpensive Zn-based template. The obtained porous B,N-carbon with rich carbon defects exhibits excellent ORR and OER performances, including high activity and stability. In alkaline medium, B,N-carbon material shows high ORR activity with an onset potential (Eonset) reaching 0.98 V versus reversible hydrogen electrode (RHE), very close to that of Pt/C, a high electron transfer number and excellent stability. This catalyst also presents the admirable ORR activity in acidic medium with a high Eonset of 0.81 V versus RHE and a four-electron process. The OER activity of B,N-carbon is superior to that of the precious metal RuO2 and Pt/C catalysts. A Zn-air battery using B,N-carbon as the air cathode exhibits a low voltage gap between charge and discharge and long-term stability. The excellent electrocatalytic performance of this porous nanocarbon material is attributed to the combined positive effects of the abundant carbon defects and the heteroatom codopants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA