Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; : e2403292, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958094

RESUMO

Antimony selenide (Sb2Se3) has sparked significant interest in high-efficiency photovoltaic applications due to its advantageous material and optoelectronic properties. In recent years, there has been considerable development in this area. Nonetheless, defects and suboptimal [hk0] crystal orientation expressively limit further device efficiency enhancement. This study used Zinc (Zn) to adjust the interfacial energy band and strengthen carrier transport. For the first time, it is discovered that the diffusion of Zn in the cadmium sulfide (CdS) buffer layer can affect the crystalline orientation of the Sb2Se3 thin films in the superstrate structure. The effect of Zn diffusion on the morphology of Sb2Se3 thin films with CdxZn1-xS buffer layer has been investigated in detail. Additionally, Zn doping promotes forming Sb2Se3 thin films with the desired [hk1] orientation, resulting in denser and larger grain sizes which will eventually regulate the defect density. Finally, based on the energy band structure and high-quality Sb2Se3 thin films, this study achieves a champion power conversion efficiency (PCE) of 8.76%, with a VOC of 458 mV, a JSC of 28.13 mA cm-2, and an FF of 67.85%. Overall, this study explores the growth mechanism of Sb2Se3 thin films, which can lead to further improvements in the efficiency of Sb2Se3 solar cells.

2.
Microb Pathog ; 192: 106709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810766

RESUMO

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Cinomose Canina , Epitopos , Vírus da Enterite do Vison , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Vírus da Enterite do Vison/imunologia , Vírus da Cinomose Canina/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vison/imunologia , Imunoglobulina G/imunologia , Vírus da Doença Aleutiana do Vison/imunologia , Parvovirus Canino/imunologia , Vírus da Panleucopenia Felina/imunologia , Mapeamento de Epitopos , Camundongos , Camundongos Endogâmicos BALB C , Enterite Viral do Vison/imunologia
3.
Gene ; 928: 148817, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39098512

RESUMO

It was previously thought that ncRNA could not encode polypeptides, but recent reports have challenged this notion. As research into ncRNA progresses, it is increasingly clear that it serves roles beyond traditional mechanisms, playing significant regulatory roles in various diseases, notably cancer, which is responsible for 70% of human deaths. Numerous studies have highlighted the diverse regulatory mechanisms of ncRNA that are pivotal in cancer initiation and progression. The role of ncRNA-encoded polypeptides in cancer regulation has gained prominence. This article explores the newly identified regulatory functions of these polypeptides in three types of ncRNA-lncRNA, pri-miRNA, and circRNA. These polypeptides can interact with proteins, influence signaling pathways, enhance miRNA stability, and regulate cancer progression, malignancy, resistance, and other clinical challenges. Furthermore, we discuss the evolutionary significance of these polypeptides in the transition from RNA to protein, examining their emergence and conservation throughout evolution.


Assuntos
Neoplasias , Peptídeos , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Circular/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
4.
J Neurotrauma ; 41(15-16): 1842-1852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497739

RESUMO

Impairment in visual function is common after traumatic brain injury (TBI) in the clinical setting, a phenomenon that translates to pre-clinical animal models as well. In Morris et al. (2021), we reported histological changes following weight-drop-induced TBI in a rodent model including retinal ganglion cell (RGC) loss, decreased electroretinogram (ERG) evoked potential, optic nerve diameter reduction, induced inflammation and gliosis, and loss of myelin accompanied by markedly impaired visual acuity. In this review, we will describe several pre-clinical TBI models that result in injuries to the visual system, indicating that visual function may be impaired following brain injury induced by a number of different injury modalities. This underscores the importance of understanding the role of the visual system and the potential detrimental sequelae to this sensory modality post-TBI. Given that most commonly employed behavioral tests such as the Elevated Plus Maze and Morris Water Maze rely on an intact visual system, interpretation of functional deficits in diffuse models may be confounded by off- target effects on the visual system.


Assuntos
Modelos Animais de Doenças , Transtornos da Visão , Animais , Transtornos da Visão/etiologia , Transtornos da Visão/fisiopatologia , Concussão Encefálica/fisiopatologia , Concussão Encefálica/complicações , Concussão Encefálica/patologia
5.
J Phys Chem Lett ; 15(9): 2301-2310, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38386516

RESUMO

The brain's function can be dynamically reconfigured through a unified neuron-synapse architecture, enabling task-adaptive network-level topology for energy-efficient learning and inferencing. Here, we demonstrate an organic neuristor utilizing a ferroelectric-electrolyte dielectric interface. This neuristor enables tunable short- to long-term plasticity and reconfigurable logic-in-memory functions by controlling the interfacial interaction between electrolyte ions and ferroelectric dipoles. Notably, the short-term plasticity of the organic neuristor allows for power-efficient reservoir computing in edge-computing scenarios, exhibiting impressive recognition accuracy, including images (90.6%) and acoustic signals (97.7%). For high-performance computing tasks, the neuristor based on long-term plasticity and logic-in-memory operations can construct all of the hardware circuits of a binarized neural network (BNN) within a unified framework. The BNN demonstrates excellent noise tolerance, achieving high recognition accuracies of 99.2% and 86.4% on the MNIST and CIFAR-10 data sets, respectively. Consequently, our research sheds light on the development of power-efficient artificial intelligence systems.

6.
Nanomicro Lett ; 16(1): 218, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884868

RESUMO

Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.

7.
Neural Regen Res ; 19(5): 1119-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862217

RESUMO

The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate (ATP) by supporting cells in the Kölliker's organ. However, the mechanisms responsible for initiating spontaneous ATP release have not been determined. Our previous study revealed that telomerase reverse transcriptase (TERT) is expressed in the basilar membrane during the first postnatal week. Its role in cochlear development remains unclear. In this study, we investigated the expression and role of TERT in postnatal cochlea supporting cells. Our results revealed that in postnatal cochlear Kölliker's organ supporting cells, TERT shifts from the nucleus into the cytoplasm over time. We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo. Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis, suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions. We observed increased ATP synthesis, release and activation of purine signaling systems in supporting cells during the first 10 postnatal days. The phenomenon that TERT translocation coincided with changes in ATP synthesis, release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system. Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.

8.
J Neurotrauma ; 41(13-14): e1736-e1758, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666723

RESUMO

Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.


Assuntos
Concussão Encefálica , Memantina , Memantina/uso terapêutico , Memantina/farmacologia , Concussão Encefálica/tratamento farmacológico , Animais , Masculino , Fatores de Tempo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ratos Sprague-Dawley , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA