Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551807

RESUMO

Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response and resistance to InO. Pre- and post-InO patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation, protein destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hypermutators resulting from error-prone DNA damage repair (non-homologous/alternative end joining, mismatch repair deficiency), suggesting hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting InO eliminated predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM and CDKN2A were observed, consistent with compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. Genome wide CRISPR/Cas9 screening in cell lines identified DNTT (TdT) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape, and eradication of residual disease prior to HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss, and provide opportunities to improve therapeutic approaches and overcome resistance.

2.
Mol Cell ; 62(2): 207-221, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105116

RESUMO

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.


Assuntos
Montagem e Desmontagem da Cromatina , Inativação Gênica , Heterocromatina/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Acetilação , Sítios de Ligação , Ilhas de CpG , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Heterocromatina/química , Heterocromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Modelos Moleculares , Nucleossomos/enzimologia , Nucleossomos/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Blood ; 137(4): 471-484, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32881995

RESUMO

Blinatumomab, a bispecific antibody that directs CD3+ T cells to CD19+ tumor cells, shows variable efficacy in B-progenitor acute lymphoblastic leukemia (B-ALL). To determine tumor-intrinsic and -extrinsic determinants of response, we studied 44 adults with relapsed or refractory B-ALL (including 2 minimal residual disease positive) treated with blinatumomab using bulk tumor and single-cell sequencing. The overall response rate in patients with hematological disease was 55%, with a high response rate in those with CRLF2-rearranged Philadelphia chromosome-like ALL (12 [75%] of 16). Pretreatment samples of responders exhibited a tumor-intrinsic transcriptomic signature of heightened immune response. Multiple mechanisms resulted in loss of CD19 expression, including CD19 mutations, CD19-mutant allele-specific expression, low CD19 RNA expression, and mutations in CD19 signaling complex member CD81. Patients with low hypodiploid ALL were prone to CD19- relapse resulting from aneuploidy-mediated loss of the nonmutated CD19 allele. Increased expression of a CD19 isoform with intraexonic splicing of exon 2, CD19 ex2part, at baseline or during therapy was associated with treatment failure. These analyses demonstrate both tumor-intrinsic and -extrinsic factors influence blinatumomab response. We show that CD19 mutations are commonly detected in CD19- relapse during blinatumomab treatment. Identification of the CD19 ex2part splice variant represents a new biomarker predictive of blinatumomab therapy failure.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19/genética , Antígenos de Neoplasias/genética , Antineoplásicos Imunológicos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Terapia de Salvação , Subpopulações de Linfócitos T/efeitos dos fármacos , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Aneuploidia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Antígenos CD19/biossíntese , Antígenos CD19/imunologia , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Recidiva , Estudos Retrospectivos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
4.
Blood ; 137(12): 1628-1640, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33512458

RESUMO

Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.


Assuntos
Edição de Genes , Leucemia Eritroblástica Aguda/genética , Animais , Sistemas CRISPR-Cas , Evolução Clonal , Epigênese Genética , Hematopoese , Humanos , Camundongos , Mutação , Transcriptoma
5.
Blood ; 138(23): 2313-2326, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110416

RESUMO

CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs. Solving the structure of type I JAK inhibitors ruxolitinib and baricitinib bound to the JAK2 tyrosine kinase domain enabled the rational design and optimization of a series of cereblon (CRBN)-directed JAK PROTACs utilizing derivatives of JAK inhibitors, linkers, and CRBN-specific molecular glues. The resulting JAK PROTACs were evaluated for target degradation, and activity was tested in a panel of leukemia/lymphoma cell lines and xenograft models of kinase-driven ALL. Multiple PROTACs were developed that degraded JAKs and potently killed CRLF2r cell lines, the most active of which also degraded the known CRBN neosubstrate GSPT1 and suppressed proliferation of CRLF2r ALL in vivo, e.g. compound 7 (SJ988497). Although dual JAK/GSPT1-degrading PROTACs were the most potent, the development and evaluation of multiple PROTACs in an extended panel of xenografts identified a potent JAK2-degrading, GSPT1-sparing PROTAC that demonstrated efficacy in the majority of kinase-driven xenografts that were otherwise unresponsive to type I JAK inhibitors, e.g. compound 8 (SJ1008030). Together, these data show the potential of JAK-directed protein degradation as a therapeutic approach in JAK-STAT-driven ALL and highlight the interplay of JAK and GSPT1 degradation activity in this context.


Assuntos
Janus Quinases/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Receptores de Citocinas/genética , Animais , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/metabolismo , Camundongos Endogâmicos NOD , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico
6.
Blood ; 138(11): 948-958, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33895809

RESUMO

Genomic classification has improved risk assignment of pediatric, but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (#NCT00002514) trial accrued 1229 adolescent/adult patients with BCR-ABL1- B-ALL (aged 14 to 65 years). Although 93% of patients achieved remission, 41% relapsed at a median of 13 months (range, 28 days to 12 years). Five-year overall survival (OS) was 42% (95% confidence interval, 39, 44). Transcriptome sequencing, gene expression profiling, cytogenetics, and fusion polymerase chain reaction enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients with outcome data, 29.5% with favorable outcomes (5-year OS 65% to 80%) were deemed standard risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5-year OS of 0% to 27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); 20.3% had intermediate-risk genotypes with 5-year OS of 33% to 45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like, and TP53 mutations in patients who were low-hypodiploid (54%) and BCL2/MYC-rearranged (33%) but were not independently associated with outcome. Of patients considered high risk based on presenting age and white blood cell count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like, and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses, which may translate into future therapeutic benefits.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adolescente , Adulto , Feminino , Rearranjo Gênico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Prognóstico , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Medição de Risco , Adulto Jovem
7.
PLoS Genet ; 12(9): e1006281, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622269

RESUMO

Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility.


Assuntos
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Oogônios/metabolismo , Ovário/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-fos/genética , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Feminino , Oogênese , Oogônios/citologia , Ovário/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nicho de Células-Tronco
8.
Proc Natl Acad Sci U S A ; 112(49): 15172-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598706

RESUMO

A majority of breast cancers are driven by estrogen via estrogen receptor-α (ERα). Our previous studies indicate that hypoxia-inducible factor 1α (HIF-1α) cooperates with ERα in breast cancer cells. However, whether ERα is implicated in the direct regulation of HIF-1α and the role of HIF-1α in endocrine therapy response are unknown. In this study we found that a subpopulation of HIF-1α targets, many of them bearing both hypoxia response elements and estrogen response elements, are regulated by ERα in normoxia and hypoxia. Interestingly, the HIF-1α gene itself also bears an estrogen response element, and its expression is directly regulated by ERα. Clinical data revealed that expression of the HIF-1α gene or a hypoxia metagene signature is associated with a poor outcome to endocrine treatment in ERα(+) breast cancer. HIF-1α was able to confer endocrine therapy resistance to ERα(+) breast cancer cells. Our findings define, for the first time to our knowledge, a direct regulatory pathway between ERα and HIF-1α, which might modulate hormone response in treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor Estrogênico/uso terapêutico , Receptor alfa de Estrogênio/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais , Tamoxifeno/uso terapêutico , Transcrição Gênica/fisiologia
9.
Blood ; 125(23): 3609-17, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25855603

RESUMO

Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL.


Assuntos
Deleção de Genes , Neoplasias Experimentais/metabolismo , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Camundongos , Camundongos Mutantes , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Supressoras de Tumor/genética
10.
Blood ; 126(1): 69-75, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25987655

RESUMO

Asparaginase is used to treat acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions can lead to suboptimal asparaginase exposure. Our objective was to use a genome-wide approach to identify loci associated with asparaginase hypersensitivity in children with ALL enrolled on St. Jude Children's Research Hospital (SJCRH) protocols Total XIIIA (n = 154), Total XV (n = 498), and Total XVI (n = 271), or Children's Oncology Group protocols POG 9906 (n = 222) and AALL0232 (n = 2163). Germline DNA was genotyped using the Affymetrix 500K, Affymetrix 6.0, or the Illumina Exome BeadChip array. In multivariate logistic regression, the intronic rs6021191 variant in nuclear factor of activated T cells 2 (NFATC2) had the strongest association with hypersensitivity (P = 4.1 × 10(-8); odds ratio [OR] = 3.11). RNA-seq data available from 65 SJCRH ALL tumor samples and 52 Yoruba HapMap samples showed that samples carrying the rs6021191 variant had higher NFATC2 expression compared with noncarriers (P = 1.1 × 10(-3) and 0.03, respectively). The top ranked nonsynonymous polymorphism was rs17885382 in HLA-DRB1 (P = 3.2 × 10(-6); OR = 1.63), which is in near complete linkage disequilibrium with the HLA-DRB1*07:01 allele we previously observed in a candidate gene study. The strongest risk factors for asparaginase allergy are variants within genes regulating the immune response.


Assuntos
Asparaginase/uso terapêutico , Hipersensibilidade a Drogas/genética , Fatores de Transcrição NFATC/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hipersensibilidade a Drogas/epidemiologia , Terapia de Reposição de Enzimas/efeitos adversos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adulto Jovem
11.
Dev Biol ; 407(2): 344-55, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863122

RESUMO

Neuroblastoma is a pediatric cancer of the developing sympathoadrenal lineage. The tumors are known to develop from the adrenal gland or paraspinal ganglia and have molecular and cellular features of sympathetic neurons such as dense core vesicles and catecholamine production. Here we present the detailed molecular, cellular, genetic and epigenetic characterization of an orthotopic xenograft derived from a high-risk stage 4 neuroblastoma patient. Overall, the xenografted tumor retained the high risk features of the primary tumor and showed aggressive growth and metastasis in the mouse. Also, the genome was preserved with no additional copy number variations, structural variations or aneuploidy. There were 13 missense mutations identified in the xenograft that were not present in the patient's primary tumor and there were no new nonsense mutations. None of the missense mutations acquired in the xenograft were in known cancer genes. We also demonstrate the feasibility of using the orthotopic neuroblastoma xenograft to test standard of care chemotherapy and molecular targeted therapeutics. Finally, we optimized a new approach to produce primary cultures of the neuroblastoma xenografts for high-throughput drug screening which can be used to test new combinations of therapeutic agents for neuroblastoma.


Assuntos
Neuroblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto , Animais , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Humanos , Imuno-Histoquímica , Camundongos , Neuroblastoma/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Nucleic Acids Res ; 42(18): 11363-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249627

RESUMO

Genome-wide distribution of histone H3K18 and H3K27 acetyltransferases, CBP (CREBBP) and p300 (EP300), is used to map enhancers and promoters, but whether these elements functionally require CBP/p300 remains largely uncertain. Here we compared global CBP recruitment with gene expression in wild-type and CBP/p300 double-knockout (dKO) fibroblasts. ChIP-seq using CBP-null cells as a control revealed nearby CBP recruitment for 20% of constitutively-expressed genes, but surprisingly, three-quarters of these genes were unaffected or slightly activated in dKO cells. Computationally defined enhancer-promoter-units (EPUs) having a CBP peak near the enhancer-like element were more predictive, with CBP/p300 deletion attenuating expression of 40% of such constitutively-expressed genes. Examining signal-responsive (Hypoxia Inducible Factor) genes showed that 97% were within 50 kilobases of an inducible CBP peak, and 70% of these required CBP/p300 for full induction. Unexpectedly, most inducible CBP peaks occurred near signal-nonresponsive genes. Finally, single-cell expression analysis revealed additional context dependence where some signal-responsive genes were not uniformly dependent on CBP/p300 in individual cells. While CBP/p300 was needed for full induction of some genes in single-cells, for other genes CBP/p300 increased the probability of maximal expression. Thus, target gene context influences the transcriptional requirement for CBP/p300, possibly by multiple mechanisms.


Assuntos
Proteína de Ligação a CREB/metabolismo , Ativação Transcricional , 2,2'-Dipiridil/farmacologia , Animais , Proteína de Ligação a CREB/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Genoma , Camundongos , Regiões Promotoras Genéticas , Elementos de Resposta , Análise de Célula Única , Sítio de Iniciação de Transcrição , Transcrição Gênica , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
13.
Nat Genet ; 39(3): 311-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277777

RESUMO

Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome.


Assuntos
Algoritmos , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Genoma Humano , Regiões Promotoras Genéticas , Genômica , Histonas/metabolismo , Humanos , Modelos Genéticos , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto
14.
Cell Rep ; 42(7): 112804, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453060

RESUMO

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin ß1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/ß-catenin-mediated EMT-like program. Blockade of interaction between ß-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/ß-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.


Assuntos
Transição Epitelial-Mesenquimal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , beta Catenina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Técnicas de Cocultura , Resistência a Medicamentos , Proliferação de Células , Microambiente Tumoral
15.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106088

RESUMO

Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs. By inference of B lineage developmental state composition, nearly all samples possessed a high abundance of pro-B cells, with variation between samples mainly driven by sub-populations. However, ZNF384- r and DUX4- r B-ALL showed composition enrichment of hematopoietic stem cells, BCR::ABL1 and KMT2A -r ALL of Early Lymphoid progenitors, MEF2D -r and TCF3::PBX1 of Pre-B cells. Enrichment of Early Lymphoid progenitors correlated with high-risk clinical features. Understanding variation in transcriptional programs and developmental states of B-ALL by scRNA-seq refines existing clinical and genomic classifications and improves prediction of treatment outcome.

16.
medRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106221

RESUMO

Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response to InO. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples. There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included protein truncation, protein destabilization, and epitope alteration. Hypermutation by error-prone DNA damage repair (alternative end-joining, mismatch repair deficiency) drove CD22 escape. Acquired loss-of-function mutations in TP53 , ATM and CDKN2A were observed, suggesting compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. The escape strategies within and beyond antigen loss to CD22-targeted therapy elucidated in this study provide insights into improving therapeutic approaches and overcoming resistance. KEY POINTS: We identified multiple mechanisms of CD22 antigen escape from inotuzumab ozogamicin, including protein truncation, protein destabilization, and epitope alteration.Hypermutation caused by error-prone DNA damage repair was a driver of CD22 mutation and escape.

17.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986997

RESUMO

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

18.
Front Artif Intell ; 5: 932665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034595

RESUMO

Rare diseases (RDs) are naturally associated with a low prevalence rate, which raises a big challenge due to there being less data available for supporting preclinical and clinical studies. There has been a vast improvement in our understanding of RD, largely owing to advanced big data analytic approaches in genetics/genomics. Consequently, a large volume of RD-related publications has been accumulated in recent years, which offers opportunities to utilize these publications for accessing the full spectrum of the scientific research and supporting further investigation in RD. In this study, we systematically analyzed, semantically annotated, and scientifically categorized RD-related PubMed articles, and integrated those semantic annotations in a knowledge graph (KG), which is hosted in Neo4j based on a predefined data model. With the successful demonstration of scientific contribution in RD via the case studies performed by exploring this KG, we propose to extend the current effort by expanding more RD-related publications and more other types of resources as a next step.

19.
Materials (Basel) ; 15(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295152

RESUMO

The article proposes the use of a semi-rigid energy-dissipation connection combined with a U-shaped metal damper to avoid brittle failure of rigid steel beam-column connections under seismic loading. The U-shaped metal damper connects the H-section column and the H-section beam to form a new energy-dissipation connection as an energy-dissipation member. Compared with the existing research, this connection has a stable energy-dissipation performance and great ductility. To clarify the mechanism of energy dissipation, mechanical models under two U-shaped damping deformation modes are established. The calculation formulas for the yield load and stiffness are derived for the corresponding deformation mode using the unit load method. Taking the T-shaped beam-column connection and the application of U-shaped steel damper in the beam-column connection as an example, the mechanical model of the connection is established and the calculation formulas for the yield load and stiffness are derived. At the same time, the connection is subjected to a quasi-static test under cyclic loading. The results show that the hysteretic curve of the test is complete and that the skeleton curve is accurate compared to the theory. The error range of the initial stiffness and yield load obtained by the test and the theoretical formula is kept within 20%, indicating that the theoretical formula is reasonable and feasible. In addition, the correctness of the finite element model is verified by establishing a finite element model and comparing it with the test. The mechanical responses of purely rigid connections and rigid semi-rigid composite connections are compared and analyzed using a multi-story and multi-span plane frame as an example. The results show that the model with semi-rigid connections, compared to the model with rigid connections, avoids the gradual loss of bearing capacity caused by the failure of the connection area of the second floor of the main structure and improves the seismic performance of the main structure.

20.
Blood Adv ; 6(2): 585-589, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662891

RESUMO

Immunotherapies directed against B-cell surface markers have been a common developmental strategy to treat B-cell malignancies. The immunoglobulin heavy chain surrogate light chain (SLC), comprising the VpreB1 (CD179a) and Lamda5 (CD179b) subunits, is expressed on pro- and pre-B cells, where it governs pre-B-cell receptor (BCR)-mediated autonomous survival signaling. We hypothesized that the pre-BCR might merit the development of targeted immunotherapies to decouple "autonomous" signaling in B-lineage acute lymphoblastic leukemia (B-ALL). We used the Children's Oncology Group (COG) minimal residual disease (MRD) flow panel to assess pre-BCR expression in 36 primary patient samples accrued to COG standard- and high-risk B-ALL studies through AALL03B1. We also assessed CD179a expression in 16 cases with day 29 end-induction samples, preselected to have ≥1% MRD. All analyses were performed on a 6-color Becton-Dickinson flow cytometer in a Clinical Laboratory Improvement Amendment/College of American Pathologist-certified laboratory. Among 36 cases tested, 32 cases were at the pre-B and 4 cases were at the pro-B stages of developmental arrest. One or both monoclonal antibodies (mAbs) showed that CD179a was present in ≥20% of the B-lymphoblast population. All cases expressed CD179a in the end-induction B-lymphoblast population. The CD179a component of the SLC is commonly expressed in B-ALL, regardless of genotype, stage of developmental arrest, or National Cancer Institute risk status.


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B , Linfoma de Burkitt/patologia , Criança , Humanos , Cadeias Leves Substitutas da Imunoglobulina/genética , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Linfoma de Células B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfócitos B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA