Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 523(7560): 333-6, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26061769

RESUMO

Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals, where it can be both a commensal and a pathogen. Intricate regulatory mechanisms ensure that bacteria have the right complement of ß-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat. Yet no mechanism is known for replacing OMPs in the outer membrane, an issue that is further confounded by the lack of an energy source and the high stability and abundance of OMPs. Here we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature, in which old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form ∼0.5-µm diameter islands, where their diffusion is restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the outer membrane. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence, the outer membrane of a Gram-negative bacterium is a spatially and temporally organized structure, and this organization lies at the heart of how OMPs are turned over in the membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Polaridade Celular , Difusão , Escherichia coli/química , Escherichia coli/genética , Proteínas Ligadas a Lipídeos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico
2.
Am J Clin Pathol ; 118(2): 269-76, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12162689

RESUMO

We report on a cross-laboratory study of type 2N von Willebrand disease (vWD). We tested 101 selected plasma samples for factor VIII and factor VIII binding activity of von Willebrand factor (vWF). Of these plasma samples, 31 were cotested by 2 specialist centers using different detection procedures for vWF-factor VIII binding: there was good agreement between results obtained by chromogenic assay and enzyme-linked immunosorbent assay. In total, 8 patients with type 2N vWD were identified. The 2-stage factor VIII assay detected a deficiency of factor VIII relative to vWF antigen in all 8 patients; the 1-stage factor VIII assay detected a relative deficiency in only 3 patients. Four patients were homozygous for the most common type 2N mutation (R854Q), 3 patients were presumed to be compound heterozygotes, and in 1 patient no type 2N mutations were identified. In this study of patients from 5 specialist centers in Australia, type 2N vWD was found in 5 families. The 2-stage factor VIII assay was more useful as a screening test than the 1-stage assay, and both vWF-factor VIII binding assays were equally effective.


Assuntos
Fator VIII/análise , Doenças de von Willebrand/sangue , Fator de von Willebrand/análise , Adulto , Animais , Austrália , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Coelhos , Valores de Referência
3.
Br J Haematol ; 136(1): 138-45, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17222201

RESUMO

In some mild haemophilia A patients (discrepant haemophilia), factor VIII coagulant activity (FVIII:C) levels, by one-stage assay are more than double than those by two-stage assay. This may be due to the longer incubation times (10-12 min) in the two-stage assay. This study aimed to determine the time course of the activation phase of the two-stage assay, using both classical coagulation and chromogenic detection methods. In both systems, for equivalent patients (equivalent FVIII:C levels by one-stage and two-stage assays, n = 6, all different mutations), similar FVIII:C results were obtained with short- or long-incubation times. In contrast, plasma from discrepant patients (n = 8, five different mutations) showed higher FVIII:C at shorter incubation times than after longer incubation times. In the chromogenic assay, FVIII:C levels were higher after incubation for 2 min (23-56%, mean 41%) than after 10 min (19-41%, mean 29%). In the classical coagulation assay, FVIII:C levels were higher at shorter incubation times (21-64%, mean 37%) than with the longer incubation times usually used (13-29%, mean 23%). These time-course experiments have verified that the longer incubation time used in the two-stage assay is at least partly responsible for the lower FVIII:C measured by that assay in discrepant haemophilia.


Assuntos
Testes de Coagulação Sanguínea , Fator VIII/farmacocinética , Hemofilia A/sangue , Hemofilia A/genética , Compostos Cromogênicos/farmacologia , Fator VIII/genética , Humanos , Mutação , Valor Preditivo dos Testes , Tromboplastina/metabolismo , Fatores de Tempo
4.
J Biol Chem ; 279(5): 3239-44, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14597619

RESUMO

A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Regiões Promotoras Genéticas , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Cinética , Modelos Biológicos , Modelos Químicos , Ligação Proteica , Fatores de Tempo , Transcrição Gênica , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA