Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402608, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744668

RESUMO

Nanohoops, cyclic association of π-conjugated systems to form a hoop-shaped molecule, have been widely developed in the last 15 years. Beyond the synthetic challenge, the strong interest towards these molecules arises from their radially oriented π-orbitals, which provide singular properties to these fascinating structures. Thanks to their particular cylindrical arrangement, this new generation of curved molecules have been already used in many applications such as host-guest complexation, biosensing, bioimaging, solid-state emission and catalysis. However, their potential in organic electronics has only started to be explored. From the first incorporation as an emitter in a fluorescent organic light emitting diode (OLED), to the recent first incorporation as a host in phosphorescent OLEDs or as charge transporter in organic field-effect transistors and in organic photovoltaics, this field has shown important breakthroughs in recent years. These findings have revealed that curved materials can play a key role in the future and can even be more efficient than their linear counterparts. This can have important repercussions for the future of electronics. Time has now come to overview the different nanohoops used to date in electronic devices in order to stimulate the future molecular designs of functional materials based on these macrocycles.

2.
Angew Chem Int Ed Engl ; : e202403066, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752880

RESUMO

Pure aromatic hydrocarbon materials (PHCs) represent a new generation of host materials for phosphorescent OLEDs (PhOLEDs), free of heteroatoms. They reduce the molecular complexity, can be easily synthesized and are an important direction towards robust devices. As heteroatoms can be involved in bonds dissociations in operating OLEDs through exciton induced degradation processes, developing novel PHCs appear particularly relevant for the future of this technology. In the present work, we report a series of extended PHCs constructed by the assembly of three spirobifluorene fragments. The resulting positional isomers present a high triplet energy level, a wide HOMO/LUMO difference and improved thermal and morphological properties compared to previously reported PHCs. These characteristics are beneficial for the next generation of host materials for PhOLEDs and provide relevant design guidelines. When used as a host in blue-emitting PhOLEDs, which are still the weakest link of the field, a very high EQE of 24 % and low threshold voltage of 3.56 V were obtained with a low-efficiency roll-off. This high performance strengthens the position of PHC strategy as an efficient alternative for OLED technology and opens the way to a more simple electronic.

3.
Chemistry ; 29(41): e202300934, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36994806

RESUMO

In the field of π-conjugated nanohoops, the size of the macrocycle has a strong impact on its structural characteristics, which in turn affect its electronic properties. In this work, we report the first experimental investigations linking the size of a nanohoop to its charge transport properties, a key property in organic electronics. We describe the synthesis and study of the first example of a cyclocarbazole possessing five constituting building units, namely [5]-cyclo-N-butyl-2,7-carbazole, [5]C-Bu-Cbz. By comparison with a shorter analogue, [4]-cyclo-N-butyl-2,7-carbazole, [4]C-Bu-Cbz, we detail the photophysical, electrochemical, morphological and charge transport properties, highlighting the key role played by the hoop size. In particular, we show that the saturated field effect mobility of [5]C-Bu-Cbz is four times higher than that of its smaller analogue [4]C-Bu-Cbz (4.22×10-5 vs 1.04×10-5  cm2 V-1 s-1 ). However, the study of the other organic field-effect transistor characteristics (threshold voltage VTH and subthreshold slope SS) suggest that a small nanohoop is beneficial for good organization of the molecules in thin films, whereas a large one increases the density of structural defects, and hence of traps for the charge carriers. The present findings are of interest for the further development of nanohoops in electronics.

4.
Angew Chem Int Ed Engl ; 61(35): e202207204, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35729063

RESUMO

To date, all efficient host materials reported for phosphorescent OLEDs (PhOLEDs) are constructed with heteroatoms, which have a crucial role in the device performance. However, it has been shown in recent years that the heteroatoms not only increase the design complexity but can also be involved in the instability of the PhOLED, which is nowadays the most important obstacle to overcome. Herein, we design pure aromatic hydrocarbon materials (PHC) as very efficient hosts in high-performance white and blue PhOLEDs. With EQE of 27.7 %, the PHC-based white PhOLEDs display similar efficiency as the best reported with heteroatom-based hosts. Incorporated as a host in a blue PhOLED, which are still the weakest links of the technology, a very high EQE of 25.6 % is reached, surpassing, for the first time, the barrier of 25 % for a PHC and FIrpic blue emitter. This performance shows that the PHC strategy represents an effective alternative for the future development of the OLED industry.

5.
J Am Chem Soc ; 143(23): 8804-8820, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34077184

RESUMO

Macrocycles possessing radially oriented π-orbitals have experienced a fantastic development. However, their incorporation in organic electronic devices remains very scarce. In this work, we aim at bridging the gap between organic electronics and nanorings by reporting the first detailed structure-properties-device performance relationship study of organic functional materials based on a nanoring system. Three [4]cyclo-N-alkyl-2,7-carbazoles bearing different alkyl chains on their nitrogen atoms have been synthesized and characterized by combined experimental and theoretical approaches. This study includes electrochemical, photophysical, thermal, and structural solid-state measurements and charge transport properties investigations. An optimized protocol of the Pt approach has been developed to synthesize the [4]cyclocarbazoles in high yield (52-64%), of great interest for further development of nanorings, especially in materials science. The charge transport properties of [4]cyclocarbazoles and model compound [8]cycloparaphenylene ([8]CPP) have been studied. Although no field effect (FE) mobility was recorded for the benchmark [8]CPP, FE mobility values of ca. 10-5 cm2·V-1·s-1 were recorded for the [4]cyclocarbazoles. The characteristics (threshold voltage VTH, subthreshold swing SS, trapping energy ΔE) recorded for the three [4]cyclocarbazoles appear to be modulated by the alkyl chain length borne by the nitrogen atoms. Remarkably, the space-charge-limited current mobilities measured for the [4]cyclocarbazoles are about 3 orders of magnitude higher than that of [8]CPP (1.37/2.78 × 10-4 cm2·V-1·s-1 for the [4]cyclocarbazoles vs 1.21 × 10-7 cm2·V-1·s-1 for [8]CPP), highlighting the strong effect of nitrogen bridges on the charge transport properties. The whole study opens the way to the use of nanorings in electronics, which is now the next step of their development.

6.
Chemistry ; 27(44): 11391-11397, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34057246

RESUMO

A family of cyclic phosphine-disiloxane featuring peri-substituted naphthyl(Nap)/acenaphthyl(Ace) scaffolds has been prepared and fully characterized including X-ray structure, which enables a detailed structural analysis. This straightforward synthesis takes advantage of both ortho- and peri-substitution of Nap/Ace-substituted phosphine oxides. The synthetic method allows diversifying the polycyclic aromatic platform (Nap and Ace) as well as the Si substituents (Me and Ph). Despite a strong steric congestion, the P-atom remains reactive toward oxidation or coordination. In particular, Au(I) complex could be prepared. All the compounds display absorption/luminescence in the UV-Vis range. Surprisingly, the P-trivalent derivatives display unexpected luminescence in the green in solid-state.

7.
Angew Chem Int Ed Engl ; 59(27): 11066-11072, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32255247

RESUMO

For the last ten years, ring-shaped π-conjugated macrocycles possessing radially directed π-orbitals have been subject to intense research. The electronic properties of these rings are deeply dependent on their size. However, most studies involve the flagship family of nanorings: the cyclo-para-phenylenes. We report herein the synthesis and study of the first examples of cyclofluorenes possessing five constituting fluorene units. The structural, optical and electrochemical properties were elucidated by X-ray crystallography, UV-vis absorption and fluorescence spectroscopy, and cyclic voltammetry. By comparison with a shorter analogue, we show how the electronic properties of [5]-cyclofluorenes are drastically different from those of [4]-cyclofluorenes, highlighting the key role played by the ring size in the cyclofluorene family.

8.
Chemistry ; 25(32): 7740-7748, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30946486

RESUMO

Nanorings, which are macrocycles possessing radially directed π-orbitals have shown fantastic development in the last ten years. Unravelling their unusual electronic properties has been one of the driving forces of this research field. However, and despite promising properties, their incorporation in organic electronic devices remains very scarce. In this work, we aim to contribute to bridge the gap between organic electronics and nanorings by reporting the synthesis, the structural and electronic properties and the incorporation in an organic field-effect transistor (OFET) of a cyclic tetracarbazole, namely [4]cyclo-N-ethyl-2,7-carbazole ([4]C-Et-Cbz). The structural, photophysical and electrochemical properties have been compared to those of structurally related analogues [4]cyclo-9,9-diethyl-2,7-fluorene [4]C-diEt-F (with carbon bridges) and [8]-cycloparaphenylene [8]CPP (without any bridge) in order to shed light on the impact of the bridging in nanorings. This work shows that nanorings can be used as an active layer in an OFET and provides a first benchmark in term of OFET characteristics for this type of molecules.

9.
J Org Chem ; 83(4): 1891-1897, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29308637

RESUMO

We report the first example of a dihydrodinaphthoheptacene derivative and the mechanistic investigations of the regioselective electrophilic intramolecular cyclization reaction involved in the synthesis. The structural, electrochemical, and photophysical properties have been investigated.

10.
Chemistry ; 23(32): 7719-7727, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28382739

RESUMO

The present works report the first structure-property relationship study of a key class of organic semiconductors, that is, the four spirobifluorene positional isomers possessing a para-, meta- or ortho-linkage. The remarkable and surprising impact of the ring bridging and of the linkages on the electronic properties of the regioisomers has been particularly highlighted and rationalised. The impact of the ring bridging on the photophysical properties has been stressed with notably the different influence of the linkages and the bridge on the singlet and triplet excited states. The first member of a new family of spirobifluorenes substituted in the 1-position, which presents better performance in blue phosphorescent OLEDs than those of its regioisomers, is reported. These features highlight not only the great potential of 1-substituted spirobifluorenes, but also the remarkable impact of regioisomerism on electronic properties.

11.
Chemistry ; 22(50): 17930-17935, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643709

RESUMO

A new electron-rich fragment, namely the quinolinophenothiazine (QPTZ) is reported. The QPTZ fragment incorporated in spiroconfigured materials leads to higher performance in blue Phosphorescent OLEDs than structurally related phenylacridine and indoloacridine based materials (increasing the HOMO energy level, modulating the spin-orbit coupling, etc.) and leads to highly efficient blue phosphorescent organic light emitting diodes, indicating the strong potential of this new molecular fragment in organic electronics.

12.
Chemistry ; 21(5): 2230-40, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25476159

RESUMO

The synthesis, photophysical and electrochemical properties as well as theoretical calculation studies of a newly designed triphenylamine derivative are described. This original compound displays one neutral form, three oxidized forms, and two protonated forms with distinct photophysical characteristics. The interplay of the emission with the protonation or the redox state (electrofluorochromism) has been explored and an on-off-on-off fluorescence switching was observed in the case of oxidation and an on-on-off fluorescence switching in the case of protonation.

13.
Phys Chem Chem Phys ; 16(36): 19345-50, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25099627

RESUMO

N,N'-Dihexyl-6,6'-dicyanoisoindigo, N,N'-didecyl-5,5',6,6'-tetracyanoisoindigo, N,N'-dihexyl-5,5',6,6'-tetracyanoisoindigo, and N,N'-dihexyl-5,5',6,6'-tetracyanothienoisoindigo have been synthesised in moderate yields by the reaction of corresponding di and tetrabromo species with CuCN, with microwave heating leading to higher yields and fewer side products for the tetrasubstituted species. Di- and tetracyano substitution anodically shifts the molecular reduction potential relative to the unsubstituted cores by ca. 0.4 and 0.8 V, respectively, with the resultant values for the tetracyano derivatives (-0.58 to -0.67 V vs. FeCp2(+/0)) suggesting the possibility of air-stable electron transport. All the synthesised cyano derivatives operate in n-channel OFETs, while the tetrabromothienoisoindigo derivative functions in a p-channel transistor. The tetracyanothienoisoindigo derivative exhibits the highest field-effect electron mobility values - up to 0.04 and 0.09 cm(2) V(-1) s(-1) in spin-coated and inkjet-printed devices respectively - and OFETs incorporating this compound have been shown to operate in air without significant degradation of their mobility values in the saturation regime.

14.
Adv Sci (Weinh) ; 11(13): e2309115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251412

RESUMO

Since the first applications of nanohoops in organic electronics appear promising, the time has come to go deeper into their rational design in order to reach high-efficiency materials. To do so, systematic studies dealing with the incorporation of electron-rich and/or electron-poor functional units on nanohoops have to be performed. Herein, the synthesis, the electrochemical, photophysical, thermal, and structural properties of two [4]cyclo-2,7-carbazoles, [4]C-Py-Cbz, and [4]C-Pm-Cbz, possessing electron-withdrawing units on their nitrogen atoms (pyridine or pyrimidine) are reported. The synthesis of these nanohoops is first optimized and a high yield above 50% is reached. Through a structure-properties relationship study, it is shown that the substituent has a significant impact on some physicochemical properties (eg HOMO/LUMO levels) while others are kept unchanged (eg fluorescence). Incorporation in electronic devices shows that the most electrically efficient Organic Field-Effect transistors are obtained with [4]C-Py-Cbz although this compound does not present the best-organized semiconductor layer. These experimental data are finally confronted with the electronic couplings between the nanohoops determined at the DFT level and have highlighted the origin in the difference of charge transport properties. [4]C-Py-Cbz has the advantage of a more 2D-like transport character than [4]C-Pm-Cbz, which alleviates the impact of defects and structural organization.

15.
Chem Commun (Camb) ; 59(100): 14835-14838, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014495

RESUMO

We report the synthesis and characterization of two new fluorophores, consisting of a [8]cyclo-para-phenylene core in which two phenylenes are bridged by either a nitrogen atom or a carbonyl group. The nitrogen bridge increases the HOMO-LUMO gap, whereas the carbonyl bridge decreases it. These results provide guidelines to control the electronic properties of nanohoops.

16.
Chem Sci ; 11(7): 1825-1831, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34123275

RESUMO

The recent surge in the efficiency of organic photovoltaic devices (OPVs) largely hinges on the reduction of energy loss (E loss) that leads to improvements in open-circuit voltage (V OC). However, there are still many unclarified factors regarding the relationship between the molecular structure and V OC, hampering the establishment of widely applicable, effective principles for the design of active-layer materials. In this contribution, we examine the origin of the large V OC shifts induced by minor structural differences in end-alkyl substituents on a series of anthracene-based p-type compounds. The examined p-type compounds are all highly crystalline, thereby enabling detailed investigation of the molecular packing with X-ray diffraction analysis. At the same time, they are strongly aggregating and hardly soluble; therefore, they are deposited with the aid of a photoprecursor approach which we have been employing for controlled deposition of insoluble acene-based organic semiconductors. The resultant OPVs afford the highest V OC of 0.966 V when the end-alkyl groups are 2-ethylbutyl, and the lowest of 0.419 V when n-butyl is used in replacement of 2-ethylbutyl. X-ray diffraction analyses and density-functional-theory calculations indicate a critical impact of the non-slipped herringbone arrangement on the observed large loss in V OC. This type of molecular arrangement is prohibited when branched alkyl chains are introduced at the ends of linear π-systems, which we consider an important factor contributing to the relatively high V OC obtained with the 2-ethylbutyl derivative. These results may serve as a basis of useful molecular-design rules to avoid unnecessary losses in V OC.

17.
J Phys Chem Lett ; 11(15): 6426-6434, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680427

RESUMO

Persistent metal-free room-temperature phosphorescence (RTP) materials attract significant interest owing to the production of long-lived triplet excited states. Although several organic designs show RTP, the impact of intermolecular interactions on the triplet excitons stabilization and migrations remains hardly understood because obtaining different ordered intermolecular interactions while conserving identical molecular electronic properties is very challenging. We propose here a new strategy to circumvent this problem by taking advantage of the distinct molecular packing that can be found between enantiomer and racemic forms of a chiral molecule. Structural, photophysical, and chiroptical investigations of chiral cyclohexane bisphthalimide derivatives showed that heterochiral and homochiral dimer interactions play a crucial role on the triplet excited state stabilization, resulting in higher RTP efficiency for enantiopure systems than for racemic one. This study paves the way to the use of molecular chirality to rationalize supramolecular properties arising from subtle intermolecular interactions.

18.
Chem Sci ; 11(19): 4887-4894, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34122944

RESUMO

In the field of phosphorescent organic light-emitting diodes (PhOLEDs), designing high-efficiency universal host materials for red, green and blue (RGB) phosphors has been quite a challenge. To date, most of the high-efficiency universal hosts reported incorporate heteroatoms, which have a crucial role in the device performance. However, the introduction of different kinds of heterocycles increases the design complexity and cost of the target material and also creates potential instability in the device performance. In this work, we show that pure aromatic hydrocarbon hosts designed with the 9,9'-spirobifluorene scaffold are high-efficiency and versatile hosts for PhOLEDs. With external quantum efficiencies of 27.3%, 26.0% and 27.1% for RGB PhOLEDs respectively, this work not only reports the first examples of high-efficiency pure hydrocarbon materials used as hosts in RGB PhOLEDs but also the highest performance reported to date for a universal host (including heteroatom-based hosts). This work shows that the PHC design strategy is promising for the future development of the OLED industry as a high-performance and low-cost option.

19.
Chem Sci ; 11(2): 567-576, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32206274

RESUMO

π-Helical push-pull dyes were prepared and their (chir)optical properties were investigated both experimentally and computationally. Specific fluorescent behaviour of bis-substituted system was observed with unprecedented solvent effect on the intensity of circularly polarized luminescence (CPL, dissymmetry factor decreasing from 10-2 to 10-3 with an increase in solvent polarity) that was linked to a change in symmetry of chiral excited state and suppression of interbranched exciton coupling. The results highlight the potential of CPL spectroscopy to study and provide a deeper understanding of electronic photophysical processes in chiral π-conjugated molecules.

20.
Chempluschem ; 83(9): 874-880, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31950686

RESUMO

Presented here is the study of a new example of [4]cyclofluorene, with ethyl chains on the bridgeheads. Its molecular structure was established by solution NMR spectroscopy and single-crystal X-ray diffraction. Three successive oxidation processes and one reversible reduction were observed through cyclic voltammetry. The optical properties were characterized both in solution and thin film by UV/visible spectroscopy as well as stationary and time-resolved fluorescence. It was found that this [4]cyclofluorene displays different characteristics compared with the other [4]cyclofluorenes substituted by methyl or propyl chains: a simple modification of the chain length induces a non-negligible effect on the emission properties, which must be linked to the specific arrangement of the fluorene units. Furthermore, single-crystal X-ray diffraction reveals the formation of a pseudo-tubular solid-state arrangement of fully symmetrical ring structures, which was not observed for the other members of the [4]cyclofluorenes family. This finding could open the way to modulation of properties of cyclofluorenes through alkyl chain engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA