Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2305027120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37490539

RESUMO

Nonlinear disordered systems are not only a model system for fundamental studies but also in high demand for practical applications. However, optical nonlinearity based on intrinsic material response is weak in random scattering systems. Here, we propose and experimentally realize a highly nonlinear mapping between the scattering potential and the emerging light of a reconfigurable multiple-scattering cavity. A quantitative analysis of the degree of nonlinearity reveals its dependence on the number of scattering events. The effective order of nonlinear mapping can be tuned over a wide range at low optical lower. The strong nonlinear mapping enhances output intensity fluctuations and long-range correlations. The flexibility, robustness, and energy efficiency of our approach provides a versatile platform for exploring such nonlinear mappings for various applications.

2.
Nat Mater ; 23(3): 369-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191630

RESUMO

Disordered photonic structures are promising for the realization of physical unclonable functions-physical objects that can overcome the limitations of conventional digital security and can enable cryptographic protocols immune against attacks by future quantum computers. The physical configuration of traditional physical unclonable functions is either fixed or can only be permanently modified, allowing one token per device and limiting their practicality. Here we overcome this limitation by creating reconfigurable structures made by light-transformable polymers in which the physical structure of the unclonable function can be reconfigured reversibly. Our approach allows the simultaneous coexistence of multiple physical unclonable functions within one device. The physical transformation is done all-optically in a reversible and spatially controlled fashion, allowing the generation of more complex keys. At the same time, as a set of switchable individual physical unclonable functions, it enables the authentication of multiple clients and allows for the practical implementations of quantum secure authentication and nonlinear generators of cryptographic keys.

3.
Nat Commun ; 14(1): 6566, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848432

RESUMO

Remotely monitoring the location and enduring presence of valuable items in adversary-controlled environments presents significant challenges. In this article, we demonstrate a monitoring approach that leverages the gigahertz radio-wave scattering and absorption of a room and its contents, including a set of mirrors with random orientations placed inside, to remotely verify the absence of any disturbance over time. Our technique extends to large physical systems the application of physical unclonable functions for integrity protection. Its main applications are scenarios where parties are mutually distrustful and have privacy and security constraints. Examples range from the verification of nuclear arms-control treaties to the securing of currency, artwork, or data centers.

4.
J Fluoresc ; 21(2): 539-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20936331

RESUMO

We present the fabrication and optical investigation of highly random self-assembled, nano-scale films, probing their influence on the luminescence properties of near surface CdSe/ZnS colloidal quantum dots. When compared to quantum dots distributed on unstructured quartz substrates, the average luminescence intensity is found to be enhanced by a factor of 160×. The silver nanoparticles are prepared using slow thermal evaporation on quartz substrates and post-deposition annealing to produce a randomly-arranged layer of smooth nano-islands. Clear polarization dependent hot spots are observed. Such hot spots deliver a maximal enhancement of the emission intensity of 240× and have a spatial density of (0.050±0.002) µm( -2). The results show that silver nano-island films strongly enhance the optical efficiency of near quantum dots emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA