Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(1): e14180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011008

RESUMO

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.


Assuntos
Aceleradores de Partículas , Dosímetros de Radiação , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Radiometria/métodos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos
2.
J Appl Clin Med Phys ; 22(8): 45-59, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275176

RESUMO

PURPOSE: To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI-linac. METHODS: Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines. Adaptations were necessary because of the atypical maximum field size (57.4 × 22 cm), FFF beam, the non-rotating collimator, the absence of a light field, the presence of the 1.5 T magnetic field, restricted access to equipment within the bore, fixed vertical and lateral table position, and the need for MR image to MV treatment alignment. The performance specifications were set for stereotactic body radiotherapy (SBRT). RESULTS: The new procedure was performed similarly to that of a conventional kilovoltage x-ray (kV) image guided radiation therapy (IGRT) linac. Results were acquired for the first Unity system. CONCLUSIONS: A comprehensive set of tests was developed, described and implemented for the MRI-linac. The MRI-linac met safety requirements for patients and operators. The system delivered radiation very accurately with, for example a gantry rotation locus of isocenter of radius 0.38 mm and an average MLC absolute positional error of 0.29 mm, consistent with use for SBRT. Specifications for clinical introduction were met.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
3.
Acta Oncol ; 58(2): 232-236, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30444161

RESUMO

BACKGROUND: In patients diagnosed with rectal cancer, dose escalation is currently being investigated in a large number of studies. Since there is little known on gross tumor volume (GTV) inter-fraction motion for rectal cancer, a wide variety in margins is used. Purpose of this study is to quantify GTV inter-fraction motion statistics on different timescales and to give estimates of planning target volume (PTV) margins. MATERIAL AND METHODS: Thirty-two patients, diagnosed with rectal cancer, were included. To investigate motion from week-to-week, 16 patients underwent a pretreatment and five weekly MRIs, prior to a radiotherapy (RT) fraction of the chemoradiotherapy treatment. To investigate motion from day-to-day, the remaining 16 patients underwent five daily MRIs before each fraction in one week of RT. GTV was delineated on all scans according to guidelines. Scans were aligned on bony anatomy with the first MRI. For both datasets separately, GTV inter-fraction motion was determined based on center-of-gravity displacement. Therefrom, systematic and random errors were determined in left/right (LR), anterior/posterior and cranial/caudal (CC) direction. PTV margin estimates were calculated and evaluated on GTV coverage. RESULTS: Systematic and random errors were found in the range of 2.3-4.8 mm and 1.5-3.3 mm from week-to-week, and 1.8-4.5 mm and 1.8-4.0 mm from day-to-day, respectively. On both timescales, similar motion patterns were found; the most motion was observed in CC whilst the least motion was observed in LR. On the week-to-week data more systematic and less random motion was observed compared to the day-to-day data. Overall, only slight differences in margin estimates were found. Derived PTV margin estimates were found to give adequate GTV coverage. CONCLUSION: GTV inter-fraction motion, on a week-to-week and day-to-day timescale, can be accounted for using motion statistics presented in this study.


Assuntos
Fracionamento da Dose de Radiação , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Neoplasias Retais/radioterapia , Adulto , Idoso , Conjuntos de Dados como Assunto/estatística & dados numéricos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Erros de Configuração em Radioterapia/estatística & dados numéricos , Radioterapia Adjuvante , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/normas , Radioterapia Guiada por Imagem/estatística & dados numéricos , Neoplasias Retais/epidemiologia , Neoplasias Retais/patologia , Fatores de Tempo , Carga Tumoral/fisiologia
4.
Acta Oncol ; 57(12): 1705-1712, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30280631

RESUMO

PURPOSE: Online 1.5T MR imaging on the MR-linac gives better target visualization compared to CBCT and facilitates online adaptive treatment strategies including daily replanning. In this simulation study, the dosimetric impact of online replanning was investigated for SBRT of lymph node oligometastases as a method for correcting for inter-fraction anatomical changes. METHODS: Pre-treatment plans were created for 17 pelvic and para-aortic lymph nodes, with 3 and 8 mm PTV margins reflecting our clinical practice for lymph nodes with good and poor visibility on CBCT. The dose-volume parameters of the pre-treatment plans were evaluated on daily anatomy as visible on the repeated MRIs and compared to online replanning. RESULTS: With online MRI-based replanning significant dosimetric improvements are obtained for the rectum, bladder, bowel and sigmoid without compromising the target dose. The amount of unintended violations of the dose constraints for target and surrounding organs could be reduced by 75% for 8 mm and 66% for 3 mm PTV margins. CONCLUSION: The use of online replanning based on the actual anatomy as seen on repeated MRI compared to online position correction for lymph node oligometastases SBRT gives beneficial dosimetric outcomes and reduces the amount of unplanned violations of dose constraints.


Assuntos
Linfonodos/diagnóstico por imagem , Irradiação Linfática/métodos , Metástase Linfática/radioterapia , Imageamento por Ressonância Magnética/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Colo Sigmoide/efeitos da radiação , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico , Fracionamento da Dose de Radiação , Feminino , Humanos , Linfonodos/patologia , Linfonodos/efeitos da radiação , Irradiação Linfática/efeitos adversos , Metástase Linfática/patologia , Imageamento por Ressonância Magnética/métodos , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas , Lesões por Radiação/prevenção & controle , Radiometria , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/métodos , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Neoplasias do Colo do Útero/patologia
5.
Acta Oncol ; 57(7): 941-949, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29457751

RESUMO

BACKGROUND AND PURPOSE: To assess intra- and inter-fraction motion uncertainties, due to displacements of the tumor bed (TB) and organs at risk (OAR), as well as intra- and inter-fraction patient set-up uncertainties, due to positioning variations, during image-guided radiation therapy (IGRT) in children with Wilms' tumor. MATERIAL AND METHODS: Four-dimensional computed tomography (4D-CT) and daily pre- and post-treatment cone-beam CT (CBCT)-scans of 15 patients (average 4, range 1-8 years) undergoing flank irradiation after nephrectomy were analyzed. TB (marked by four surgical clips) and OAR motion uncertainties were quantified by displacements of the center of mass in all orthogonal directions. Translational and rotational bone off-sets were recorded for patient set-up uncertainties assessment in all orthogonal directions. The average results, systematic and random errors were computed. RESULTS: Average intra- and inter-fraction motion uncertainties were ≤1.1 mm (range: [-6.9;7.9] mm) for the TB and ≤3.2 mm (range: [-9.1;9.6] mm) for the OAR. Average intra- and inter-fraction patient set-up uncertainties were ≤0.1 mm (range: [-3.3;4.8] mm) and ≤0.9° (range: [0.0;2.8°]). Both motion and patient set-up uncertainties were larger for the cranio-caudal direction. Calculated systematic and random errors were ≤2.4 mm for the motion uncertainties and ≤0.8 mm/0.7° for the patient set-up uncertainties. CONCLUSIONS: Average motion and patient set-up uncertainties during radiotherapy treatment were found to be limited. However, uncertainties were larger for the cranio-caudal direction and outliers were found in all orthogonal directions. When having available 4D-CT and CBCT information, the use of patient-specific and anisotropic safety margin expansions is advised for both target volume and OAR.


Assuntos
Fracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Guiada por Imagem/normas , Incerteza , Tumor de Wilms/radioterapia , Criança , Pré-Escolar , Terapia Combinada , Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Lactente , Masculino , Movimento (Física) , Nefrectomia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Mecânica Respiratória/fisiologia , Estudos Retrospectivos , Tumor de Wilms/cirurgia
6.
Bioelectromagnetics ; 37(7): 471-80, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27434783

RESUMO

Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Humanos , Tolerância a Radiação , Radiometria , Raios X
7.
J Appl Clin Med Phys ; 17(4): 172-189, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27455484

RESUMO

Conventional treatment planning in intensity-modulated radiation therapy (IMRT) is a trial-and-error process that usually involves tedious tweaking of optimization parameters. Here, we present an algorithm that automates part of this process, in particular the adaptation of voxel-based penalties within normal tissue. Thereby, the proposed algorithm explicitly considers a priori known physical limitations of photon irradiation. The efficacy of the developed algorithm is assessed during treatment planning studies comprising 16 prostate and 5 head and neck cases. We study the eradication of hot spots in the normal tissue, effects on target coverage and target conformity, as well as selected dose volume points for organs at risk. The potential of the proposed method to generate class solutions for the two indications is investigated. Run-times of the algorithms are reported. Physically constrained voxel-based penalty adaptation is an adequate means to automatically detect and eradicate hot-spots during IMRT planning while maintaining target coverage and conformity. Negative effects on organs at risk are comparably small and restricted to lower doses. Using physically constrained voxel-based penalty adaptation, it was possible to improve the generation of class solutions for both indications. Considering the reported run-times of less than 20 s, physically constrained voxel-based penalty adaptation has the potential to reduce the clinical workload during planning and automated treatment plan generation in the long run, facilitating adaptive radiation treatments.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica
8.
Semin Radiat Oncol ; 34(1): 14-22, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105089

RESUMO

MR-Guided Radiation Therapy (MRIgRT) has been made possible only due to the ingenuity and commitment of commercial radiation therapy system vendors. Unlike conventional linear accelerator systems, MRIgRT systems have had to overcome significant and previously untested techniques to integrate the MRI systems with the radiation therapy delivery systems. Each of these three commercial systems has developed different approaches to integrating their MR and Linac functions. Each has also decided on a different main magnetic field strength, from 0.35T to 1.5T, as well as different design philosophies for other systems, such as the patient support assembly and treatment planning workflow. This paper is intended to provide the reader with a detailed understanding of each system's configuration so that the reader can better interpret the scientific literature concerning these commercial MRIgRT systems.


Assuntos
Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Fluxo de Trabalho , Planejamento da Radioterapia Assistida por Computador
9.
Sci Rep ; 14(1): 15002, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951683

RESUMO

Variational image registration methods commonly employ a similarity metric and a regularization term that renders the minimization problem well-posed. However, many frequently used regularizations such as smoothness or curvature do not necessarily reflect the underlying physics that apply to anatomical deformations. This, in turn, can make the accurate estimation of complex deformations particularly challenging. Here, we present a new highly flexible regularization inspired from the physics of fluid dynamics which allows applying independent penalties on the divergence and curl of the deformations and/or their nth order derivative. The complexity of the proposed generalized div-curl regularization renders the problem particularly challenging using conventional optimization techniques. To this end, we develop a transformation model and an optimization scheme that uses the divergence and curl components of the deformation as control parameters for the registration. We demonstrate that the original unconstrained minimization problem reduces to a constrained problem for which we propose the use of the augmented Lagrangian method. Doing this, the equations of motion greatly simplify and become managable. Our experiments indicate that the proposed framework can be applied on a variety of different registration problems and produce highly accurate deformations with the desired physical properties.

10.
Med Phys ; 51(4): 2354-2366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477841

RESUMO

BACKGROUND: Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition. PURPOSE: We demonstrate real-time cardiac physiology-based radiotherapy beam gating within a preset cardiac phase on an MR-linac. METHODS: MR images were acquired in healthy volunteers (n = 5, mean age = 29.6 years, mean heart-rate (HR) = 56.2 bpm) on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) after obtaining written informed consent. The images were acquired using a single-slice balance steady-state free precession (bSSFP) sequence in the coronal or sagittal plane (TR/TE = 3/1.48 ms, flip angle = 48 ∘ $^{\circ }$ , SENSE = 1.5, field-of-view = 400 × 207 $\text{field-of-view} = {400}\times {207}$ mm 2 ${\text{mm}}^{2}$ , voxel size = 3 × 3 × 15 $3\times 3\times 15$ mm 3 ${\rm mm}^{3}$ , partial Fourier factor = 0.65, frame rate = 13.3 Hz). In parallel, a 4-lead ECG-signal was acquired using MR-compatible equipment. The feasibility of ECG-based beam gating was demonstrated with a prototype gating workflow using a Quasar MRI4D motion phantom (IBA Quasar, London, ON, Canada), which was deployed in the bore of the MR-linac. Two volunteer-derived combined ECG-motion traces (n = 2, mean age = 26 years, mean HR = 57.4 bpm, peak-to-peak amplitude = 14.7 mm) were programmed into the phantom to mimic dose delivery on a cardiac target in breath-hold. Clinical ECG-equipment was connected to the phantom for ECG-voltage-streaming in real-time using research software. Treatment beam gating was performed in the quiescent phase (end-diastole). System latencies were compensated by delay time correction. A previously developed MRI-based gating workflow was used as a benchmark in this study. A 15-beam intensity-modulated radiotherapy (IMRT) plan ( 1 × 6.25 ${1}\times {6.25}$ Gy) was delivered for different motion scenarios onto radiochromic films. Next, cardiac motion was then estimated at the basal anterolateral myocardial wall via normalized cross-correlation-based template matching. The estimated motion signal was temporally aligned with the ECG-signal, which were then used for position- and ECG-based gating simulations in the cranial-caudal (CC), anterior-posterior (AP), and right-left (RL) directions. The effect of gating was investigated by analyzing the differences in residual motion at 30, 50, and 70% treatment beam duty cycles. RESULTS: ECG-based (MRI-based) beam gating was performed with effective duty cycles of 60.5% (68.8%) and 47.7% (50.4%) with residual motion reductions of 62.5% (44.7%) and 43.9% (59.3%). Local gamma analyses (1%/1 mm) returned pass rates of 97.6% (94.1%) and 90.5% (98.3%) for gated scenarios, which exceed the pass rates of 70.3% and 82.0% for nongated scenarios, respectively. In average, the gating simulations returned maximum residual motion reductions of 88%, 74%, and 81% at 30%, 50%, and 70% duty cycles, respectively, in favor of MRI-based gating. CONCLUSIONS: Real-time ECG-based beam gating is a feasible alternative to MRI-based gating, resulting in improved dose delivery in terms of high γ -pass $\gamma {\text{-pass}}$ rates, decreased dose deposition outside the PTV and residual motion reduction, while by-passing cardiac MRI challenges.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Adulto , Imageamento por Ressonância Magnética , Suspensão da Respiração , Movimento (Física) , Software , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
11.
Phys Imaging Radiat Oncol ; 30: 100580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707627

RESUMO

Background and purpose: MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC. Materials and methods: An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes. Results: The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%. Conclusion: The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.

12.
Phys Med Biol ; 69(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048629

RESUMO

Medical image registration is an integral part of various clinical applications including image guidance, motion tracking, therapy assessment and diagnosis. We present a robust approach for mono-modal and multi-modal medical image registration. To this end, we propose the novel shape operator based local image distance (SOLID) which estimates the similarity of images by comparing their second-order curvature information. Our similarity metric is rigorously tailored to be suitable for comparing images from different medical imaging modalities or image contrasts. A critical element of our method is the extraction of local features using higher-order shape information, enabling the accurate identification and registration of smaller structures. In order to assess the efficacy of the proposed similarity metric, we have implemented a variational image registration algorithm that relies on the principle of matching the curvature information of the given images. The performance of the proposed algorithm has been evaluated against various alternative state-of-the-art variational registration algorithms. Our experiments involve mono-modal as well as multi-modal and cross-contrast co-registration tasks in a broad variety of anatomical regions. Compared to the evaluated alternative registration methods, the results indicate a very favorable accuracy, precision and robustness of the proposed SOLID method in various highly challenging registration tasks.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
13.
Med Phys ; 50(9): 5715-5722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36932727

RESUMO

BACKGROUND: Deformable image registration is increasingly used in radiotherapy to adapt the treatment plan and accumulate the delivered dose. Consequently, clinical workflows using deformable image registration require quick and reliable quality assurance to accept registrations. Additionally, for online adaptive radiotherapy, quality assurance without the need for an operator to delineate contours while the patient is on the treatment table is needed. Established quality assurance criteria such as the Dice similarity coefficient or Hausdorff distance lack these qualities and also display a limited sensitivity to registration errors beyond soft tissue boundaries. PURPOSE: The purpose of this study is to investigate the existing intensity-based quality assurance criteria structural similarity and normalized mutual information for their ability to quickly and reliably identify registration errors for (online) adaptive radiotherapy and compare them to contour-based quality assurance criteria. METHODS: All criteria were tested using synthetic and simulated biomechanical deformations of 3D MR images as well as manually annotated 4D CT data. The quality assurance criteria were scored for classification performance, for their ability to predict the registration error, and for their spatial information. RESULTS: We found that besides being fast and operator-independent, the intensity-based criteria have the highest area under the receiver operating characteristic curve and provide the best input for models to predict the registration error on all data sets. Structural similarity furthermore provides spatial information with a higher gamma pass rate of the predicted registration error than commonly used spatial quality assurance criteria. CONCLUSIONS: Intensity-based quality assurance criteria can provide the required confidence in decisions about using mono-modal registrations in clinical workflows. They thereby enable automated quality assurance for deformable image registration in adaptive radiotherapy treatments.


Assuntos
Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Algoritmos , Imageamento Tridimensional , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
Phys Imaging Radiat Oncol ; 27: 100483, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37664798

RESUMO

Background and Purpose: Deformable image registration (DIR) is a core element of adaptive radiotherapy workflows, integrating daily contour propagation and/or dose accumulation in their design. Propagated contours are usually manually validated and may be edited, thereby locally invalidating the registration result. This means the registration cannot be used for dose accumulation. In this study we proposed and evaluated a novel multi-modal DIR algorithm that incorporated contour information to guide the registration. This integrates operator-validated contours with the estimated deformation vector field and warped dose. Materials and Methods: The proposed algorithm consisted of both a normalized gradient field-based data-fidelity term on the images and an optical flow data-fidelity term on the contours. The Helmholtz-Hodge decomposition was incorporated to ensure anatomically plausible deformations. The algorithm was validated for same- and cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography (CT) registrations, and CT-to-MR registrations for different anatomies, all based on challenging clinical situations. The contour-correspondence, anatomical fidelity, registration error, and dose warping error were evaluated. Results: The proposed contour-guided algorithm considerably and significantly increased contour overlap, decreasing the mean distance to agreement by a factor of 1.3 to 13.7, compared to the best algorithm without contour-guidance. Importantly, the registration error and dose warping error decreased significantly, by a factor of 1.2 to 2.0. Conclusions: Our contour-guided algorithm ensured that the deformation vector field and warped quantitative information were consistent with the operator-validated contours. This provides a feasible semi-automatic strategy for spatially correct warping of quantitative information even in difficult and artefacted cases.

15.
Radiother Oncol ; 182: 109506, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736589

RESUMO

BACKGROUND AND PURPOSE: In MR-guided SBRT of pancreatic cancer, intrafraction motion is typically monitored with (interleaved) 2D cine MRI. However, tumor surroundings are often not fully captured in these images, and motion might be distorted by through-plane movement. In this study, the feasibility of highly accelerated 3D cine MRI to reconstruct the delivered dose during MR-guided SBRT was assessed. MATERIALS AND METHODS: A 3D cine MRI sequence was developed for fast, time-resolved 4D imaging, featuring a low spatial resolution that allows for rapid volumetric imaging at 430 ms. The 3D cines were acquired during the entire beam-on time of 23 fractions of online adaptive MR-guided SBRT for pancreatic tumors on a 1.5 T MR-Linac. A 3D deformation vector field (DVF) was extracted for every cine dynamic using deformable image registration. Next, these DVFs were used to warp the partial dose delivered in the time interval between consecutive cine acquisitions. The warped dose plans were summed to obtain a total delivered dose. The delivered dose was also calculated under various motion correction strategies. Key DVH parameters of the GTV, duodenum, small bowel and stomach were extracted from the delivered dose and compared to the planned dose. The uncertainty of the calculated DVFs was determined with the inverse consistency error (ICE) in the high-dose regions. RESULTS: The mean (SD) relative (ratio delivered/planned) D99% of the GTV was 0.94 (0.06), and the mean (SD) relative D0.5cc of the duodenum, small bowel, and stomach were respectively 0.98 (0.04), 1.00 (0.07), and 0.98 (0.06). In the fractions with the lowest delivered tumor coverage, it was found that significant lateral drifts had occurred. The DVFs used for dose warping had a low uncertainty with a mean (SD) ICE of 0.65 (0.07) mm. CONCLUSION: We employed a fast, real-time 3D cine MRI sequence for dose reconstruction in the upper abdomen, and demonstrated that accurate DVFs, acquired directly from these images, can be used for dose warping. The reconstructed delivered dose showed only a modest degradation of tumor coverage, mostly attainable to baseline drifts. This emphasizes the need for motion monitoring and development of intrafraction treatment adaptation solutions, such as baseline drift corrections.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Imagem Cinética por Ressonância Magnética , Radiocirurgia/métodos , Estudos de Viabilidade , Radioterapia Guiada por Imagem/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética
16.
Phys Imaging Radiat Oncol ; 26: 100434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034029

RESUMO

Background and purpose: Online adaptive magnetic resonance (MR)-guided treatment planning for pancreatic tumors on 1.5T systems typically employs Cartesian 3D T 2w magnetic resonance imaging (MRI). The main disadvantage of this sequence is that respiratory motion results in substantial blurring in the abdomen, which can hamper delineation accuracy. This study investigated the use of two motion-robust radial MRI sequences as main delineation scan for pancreatic MR-guided radiotherapy. Materials and methods: Twelve patients with pancreatic tumors were imaged with a 3D T 2w scan, a Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) scan (partially overlapping strips), and a 3D Vane scan (stack-of-stars), on a 1.5T MR-Linac under abdominal compression. The scans were assessed by three radiation oncologists for their suitability for online adaptive delineation. A quantitative comparison was made for gradient entropy and the effect of motion on apparent target position. Results: The PROPELLER scans were selected as first preference in 56% of the cases, the 3D T 2w in 42% and the 3D Vane in 3%. PROPELLER scans sometimes contained a large interslice variation which would have compromised delineation. Gradient entropy was significantly higher in 3D T 2w patient scans. The apparent target position was more sensitive to motion amplitude in the PROPELLER scans, but substantial offsets did not occur under 10 mm peak-to-peak. Conclusion: PROPELLER MRI may be a superior imaging sequence for pancreatic MRgRT compared to standard Cartesian sequences. The large interslice variation should be mitigated through further sequence optimization before PROPELLER can be adopted for online treatment adaptation.

17.
Phys Imaging Radiat Oncol ; 28: 100507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38035206

RESUMO

Background and purpose: Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration. Materials and methods: We experimentally verified the total dose, measured on external beam therapy 3 (EBT3) film, using a treatment with five online adapted fractions. Three series of experiments were performed, each focusing on a category of inter-fractional variation; translations, rotations and body modifications. Variations were introduced during each fraction and adapted plans were generated and irradiated. Single fraction doses and total doses over five online adapted fractions were investigated. Results: The online adapted measurements and calculations showed a good agreement for single fractions and multi-fraction treatments for the dose profiles, gamma passing rates, dose deviations and distances to agreement. The gamma passing rate using a 2%/2 mm criterion ranged from 99.2% to 99.5% for a threshold dose of 10% of the maximum dose (Dmax) and from 96.2% to 100% for a threshold dose of 90% of Dmax, for the total translations, rotations and body modifications. Conclusions: The total doses of multi-fraction treatments showed similar accuracies compared to single fraction treatments, indicating an accurate dosimetric outcome of a multi-fraction treatment in adaptive magnetic resonance imaging guided radiotherapy.

18.
Med Phys ; 50(1): 397-409, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36210631

RESUMO

BACKGROUND: Lung stereotactic body radiotherapy (SBRT) has proven an effective treatment for medically inoperable lung tumors, even for (ultra-)central tumors. Recently, there has been growing interest in radiation-induced cardiac toxicity in lung radiotherapy. More specifically, dose to cardiac (sub-)structures (CS) was found to correlate with survival after radiotherapy. PURPOSE: Our goal is first, to investigate the percentage of patients who require CS sparing in an magnetic resonance imaging guided lung SBRT workflow, and second, to quantify how successful implementation of cardiac sparing would be. METHODS: The patient cohort consists of 34 patients with stage II-IV lung cancer who were treated with SBRT between 2017 and 2020. A mid-position computed tomography (CT) image was used to create treatment plans for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) following clinical templates. Under guidance of a cardio-thoracic radiologist, 11 CS were contoured manually for each patient. Dose constraints for five CS were extracted from the literature. Patients were stratified according to their need for cardiac sparing depending on the CS dose in their non-CS constrained MR-linac treatment plans. Cardiac sparing treatment plans (CSPs) were then created and dosimetrically compared with their non-CS constrained treatment plan counterparts. CSPs complied with the departmental constraints and were considered successful when fulfilling all CS constraints, and partially successful if some CS constraints could be fulfilled. Predictors for the need for and feasibility of cardiac sparing were explored, specifically planning target volume (PTV) size, cranio-caudal (CC) distance, 3D distance, and in-field overlap volume histograms (iOVH). RESULTS: 47% of the patients (16 out of 34) were in need of cardiac sparing. A successful CSP could be created for 62.5% (10 out of 16) of these patients. Partially successful CSPs still complied with two to four CS constraints. No significant difference in dose to organs at risk (OARs) or targets was identified between CSPs and the corresponding non-CS constrained MR-linac plans. The need for cardiac sparing was found to correlate with distance in the CC direction between target and all of the individual CS (Mann-Whitney U-test p-values <10-6 ). iOVHs revealed that complying with dose constraints for CS is primarily determined by in-plane distance and secondarily by PTV size. CONCLUSION: We demonstrated that CS can be successfully spared in lung SBRT on the MR-linac for most of this patient cohort, without compromising doses to the tumor or to other OARs. CC distance between the target and CS can be used to predict the need for cardiac sparing. iOVHs, in combination with PTV size, can be used to predict if cardiac sparing will be successful for all constrained CS except the left ventricle.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos de Viabilidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pulmão , Imageamento por Ressonância Magnética/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
19.
Radiother Oncol ; 189: 109932, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778533

RESUMO

This work reports on the first seven patients treated with gating and baseline drift correction on the high-field MR-Linac system. Dosimetric analysis showed that the active motion management system improved congruence to the planned dose, efficiently mitigating detrimental effects of intrafraction motion in the upper abdomen.


Assuntos
Neoplasias Abdominais , Radioterapia de Intensidade Modulada , Humanos , Movimento , Movimento (Física) , Radiometria , Neoplasias Abdominais/radioterapia , Planejamento da Radioterapia Assistida por Computador
20.
J Magn Reson Imaging ; 35(4): 795-803, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22068916

RESUMO

PURPOSE: To evaluate and compare the maximum temperature (T(max) ) in the head after exposure to a 300 MHz radiofrequency (RF) field induced by a magnetic resonance imaging (MRI) coil using two thermal simulation methods: Pennes' bioheat equation (PBHE) and discrete vasculature (DIVA). MATERIALS AND METHODS: The electromagnetic field induced in the head by a 7T birdcage coil was simulated using finite-difference time-domain (FDTD) and validated by MRI. The specific absorption rate (SAR) distributions normalized to the 10-gram maximum or the whole-head average were used for PBHE and DIVA simulations. RESULTS: For all cases, the T(max) in PBHE was slightly higher than in DIVA. The T(max) was 37.9-38.4°C, depending on the simulation method or perfusion rate. CONCLUSION: In some situations, RF exposure limited to SAR(max,10g) led to a T(max) higher than allowed by International Electrotechnical Commission (IEC) regulations. Therefore, it is advisable to use thermal simulations to evaluate RF safety of MRI. The simulation method used only slightly influenced the observed maximum temperature; the observed temperature with PBHE was higher in all situations. So PBHE is an appropriate method for RF safety assessment of MRI in the head. Using DIVA simulations, it was found unlikely that the body temperature increases significantly due to energy deposited by a head coil under normal circumstances.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Artérias Cerebrais/fisiologia , Cabeça/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Modelos Biológicos , Temperatura Corporal/efeitos da radiação , Encéfalo/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Cabeça/efeitos da radiação , Humanos , Doses de Radiação , Ondas de Rádio , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA