Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(5): 791-803, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38652897

RESUMO

Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1ß altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.


Assuntos
Células Epiteliais , Fumaça , Humanos , Fumaça/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Linhagem Celular , Queima de Resíduos a Céu Aberto
2.
Immunity ; 43(4): 703-14, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26431949

RESUMO

Epigenetic changes, including histone methylation, control T cell differentiation and memory formation, though the enzymes that mediate these processes are not clear. We show that UTX, a histone H3 lysine 27 (H3K27) demethylase, supports T follicular helper (Tfh) cell responses that are essential for B cell antibody generation and the resolution of chronic viral infections. Mice with a T cell-specific UTX deletion had fewer Tfh cells, reduced germinal center responses, lacked virus-specific immunoglobulin G (IgG), and were unable to resolve chronic lymphocytic choriomeningitis virus infections. UTX-deficient T cells showed decreased expression of interleukin-6 receptor-α and other Tfh cell-related genes that were associated with increased H3K27 methylation. Additionally, Turner Syndrome subjects, who are predisposed to chronic ear infections, had reduced UTX expression in immune cells and decreased circulating CD4(+) CXCR5(+) T cell frequency. Thus, we identify a critical link between UTX in T cells and immunity to infection.


Assuntos
Histona Desmetilases/deficiência , Histona Desmetilases/fisiologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Nucleares/deficiência , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Viremia/imunologia , Animais , Anticorpos Antivirais/biossíntese , Diferenciação Celular , Feminino , Dosagem de Genes , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-6/biossíntese , Subunidade alfa de Receptor de Interleucina-6/genética , Cooperação Linfocítica , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Metilação , Camundongos , Modelos Imunológicos , Otite Média/etiologia , Processamento de Proteína Pós-Traducional , Receptores CXCR5/análise , Especificidade da Espécie , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/virologia , Linfócitos T Auxiliares-Indutores/enzimologia , Linfócitos T Auxiliares-Indutores/virologia , Transcrição Gênica , Síndrome de Turner/complicações , Síndrome de Turner/enzimologia , Virulência , Inativação do Cromossomo X
3.
Environ Res ; 259: 119467, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942256

RESUMO

INTRODUCTION: Existing evidence suggests that exposure to phthalates is higher among younger age groups. However, limited knowledge exists on how phthalate exposure, as well as exposure to replacement plasticizers, di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) and di-2-ethylhexyl terephthalate (DEHTP), change from infancy through early childhood. METHODS: Urine samples were collected across the first 5 years of life from typically developing infants and young children enrolled between 2017 and 2020 in the longitudinal UNC Baby Connectome Project. From 438 urine samples among 187 participants, we quantified concentrations of monobutyl phthalate (MnBP), mono-3-carboxypropyl phthalate (MCPP), monoisobutyl phthalate (MiBP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), and metabolites of di(2-ethylhexyl) phthalate (DEHP), diisonoyl phthalate (DiNP), DINCH and DEHTP. Specific gravity (SG) adjusted metabolite and molar sum concentrations were compared across age groups. Intraclass correlation coefficients (ICCs) were calculated among 122 participants with multiple urine specimens (373 samples). RESULTS: Most phthalate metabolites showed high detection frequencies (>80% of samples). Replacement plasticizers DINCH (58-60%) and DEHTP (>97%) were also commonly found. DiNP metabolites were less frequently detected (<10%). For some metabolites, SG-adjusted concentrations were inversely associated with age, with the highest concentrations found in the first year of life. ICCs revealed low to moderate reliability in metabolite measurements (ρ = 0.10-0.48) suggesting a high degree of within-individual variation in exposure among this age group. The first 6 months (compared to remaining age groups) showed an increased ratio of carboxylated metabolites of DEHP and DEHTP, compared to other common metabolites, but no clear age trends for DINCH metabolite ratios were observed. CONCLUSION: Metabolites of phthalates and replacements plasticizers were widely detected in infancy and early childhood, with the highest concentrations observed in the first year of life for several metabolites. Higher proportions of carboxylated metabolites of DEHP and DEHTP in younger age groups indicate potential differences in metabolism during infancy.

4.
Environ Health ; 22(1): 69, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845729

RESUMO

BACKGROUND: Prenatal exposure to metals in private well water may increase the risk of preterm birth (PTB) (delivery < 37 weeks' gestation). In this study, we estimated associations between arsenic, manganese, lead, cadmium, chromium, copper, and zinc concentrations in private well water and PTB incidence in North Carolina (NC). METHODS: Birth certificates from 2003-2015 (n = 1,329,071) were obtained and pregnancies were assigned exposure using the mean concentration and the percentage of tests above the maximum contaminant level (MCL) for the census tract of each individuals' residence at the time of delivery using the NCWELL database (117,960 well water tests from 1998-2019). We evaluated associations between single metals and PTB using adjusted logistic regression models. Metals mixtures were assessed using quantile-based g-computation. RESULTS: Compared with those in other census tracts, individuals residing in tracts where > 25% of tests exceeded the MCL for lead (aOR 1.10, 95%CI 1.02,1.18) or cadmium (aOR 1.11, 95% CI 1.00,1.23) had an increased odds of PTB. Conversely, those residing in areas with > 25% MCL for zinc (aOR 0.77 (95% CI: 0.56,1.02) and copper (aOR 0.53 (95% CI: 0.13,1.34)) had a reduced odds of PTB. A quartile increase in the concentrations of a mixture of lead, cadmium, and chromium was associated with a small increased odds for PTB (aOR 1.02, 95% CI 1.01, 1.03). This metal mixture effect was most pronounced among American Indian individuals (aOR per quartile increase in all metals: 1.19 (95% CI 1.06,1.34)). CONCLUSIONS: In a large study population of over one million births, lead and cadmium were found to increase the risk of PTB individually and in a mixture, with additional mixtures-related impacts estimated from co-exposure with chromium. This study highlights critical racial and ethnic health disparities in relation to private well water thereby emphasizing the urgent need for improved private well water quality to protect vulnerable populations.


Assuntos
Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , North Carolina/epidemiologia , Cádmio , Cobre , Metais , Zinco , Cromo
5.
Am J Respir Crit Care Med ; 206(10): 1248-1258, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731626

RESUMO

Rationale: Numerous studies have demonstrated that e-cigarettes can impact respiratory immune homeostasis; however, the extent of these effects remains an active area of investigation, and most previous studies were conducted with model systems or subjects exposed to third-generation e-cigarettes, such as vape pens and box mods. Objectives: Given the rise in popularity of nicotine-salt-containing pods and disposable e-cigarettes (fourth generation), we set out to better understand the respiratory effects of these newer e-cigarettes and compare their effects to early-generation devices. Methods: We collected induced sputum samples from a cohort of nonsmokers, smokers, third-generation e-cigarette users, and fourth-generation e-cigarette users (n = 20-30 per group) and evaluated the cellular and fluid-phase composition for markers of inflammation, host defense, and lung injury. Measurements and Main Results: Fourth-generation e-cigarette users had significantly more bronchial epithelial cells in the sputum, suggestive of airway injury. Concentrations of soluble intercellular adhesion molecule 1 (sICAM1) and soluble vascular cell adhesion molecule 1 (sVCAM1) were significantly lower in fourth-generation e-cigarette users in comparison with all other groups, and CRP (C-reactive protein), IFN-γ, MCP-1 (monocyte chemoattractant protein-1), MMP-2 (matrix metalloproteinase 2), uteroglobin, and VEGF (vascular endothelial growth factor) were significantly lower in fourth- versus third-generation e-cigarette users, suggestive of overall immune suppression in fourth-generation e-cigarette users. Predictive modeling also demonstrated clear separation between exposure groups, indicating that the overall mediator milieu is different between groups, particularly fourth-generation e-cigarette users. Conclusions: Our results indicate disrupted immune homeostasis in fourth-generation e-cigarette users and demonstrate that the biological effects of fourth-generation e-cigarette use are unique compared with those associated with previous-generation e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Vaping/efeitos adversos , Metaloproteinase 2 da Matriz , Fator A de Crescimento do Endotélio Vascular , Biomarcadores , Homeostase
6.
J Biol Chem ; 296: 100386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556374

RESUMO

The trophectoderm layer of the blastocyst-stage embryo is the precursor for all trophoblast cells in the placenta. Human trophoblast stem (TS) cells have emerged as an attractive tool for studies on early trophoblast development. However, the use of TS cell models is constrained by the limited genetic diversity of existing TS cell lines and restrictions on using human fetal tissue or embryos needed to generate additional lines. Here we report the derivation of two distinct stem cell types of the trophectoderm lineage from human pluripotent stem cells. Analogous to villous cytotrophoblasts in vivo, the first is a CDX2- stem cell comparable with placenta-derived TS cells-they both exhibit identical expression of key markers, are maintained in culture and differentiate under similar conditions, and share high transcriptome similarity. The second is a CDX2+ stem cell with distinct cell culture requirements, and differences in gene expression and differentiation, relative to CDX2- stem cells. Derivation of TS cells from pluripotent stem cells will significantly enable construction of in vitro models for normal and pathological placental development.


Assuntos
Fator de Transcrição CDX2/metabolismo , Células-Tronco Embrionárias/citologia , Placenta/citologia , Células-Tronco Pluripotentes/citologia , Trofoblastos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Meios de Cultura , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Gravidez , Trofoblastos/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L722-L736, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318855

RESUMO

Inhalation exposure to cigarette smoke and e-cigarette aerosol is known to alter the respiratory immune system, particularly cytokine signaling. In assessments of health impacts of tobacco product use, cytokines are often measured using a variety of sample types, from serum to airway mucosa. However, it is currently unclear whether and how well cytokine levels from different sample types and the airway locations they represent are correlated, making comparing studies that utilize differing sample types challenging. To address this challenge, we compared baseline cytokine signatures in upper and lower airways and systemic samples and evaluated how groups of coexpressed cytokines change with tobacco product use. Matched nasal lavage fluid (NLF), nasal epithelial lining fluid (NELF), sputum, and circulating serum samples were collected from 14 nonsmokers, 13 cigarette smokers, and 17 e-cigarette users and analyzed for levels of 22 cytokines. Individual cytokine signatures were first compared across each sample type, followed by identification of cytokine clusters within each sample type. Identified clusters were then evaluated for potential alterations following tobacco product use using eigenvector analyses. Individual cytokine signatures in the respiratory tract were significantly correlated (NLF, NELF, and sputum) compared with randomly permutated signatures, whereas serum was not significantly different from random permutations. Cytokine clusters that were similar across airway sample types were modified by tobacco product use, particularly e-cigarettes, indicating a degree of uniformity in terms of how cytokine host defense and immune cell recruitment responses cooperate in the upper and lower airways. Overall, cluster-based analyses were found to be especially useful in small cohort assessments, providing higher sensitivity than individual signatures to detect biologically meaningful differences between tobacco use groups. This novel cluster analysis approach revealed that eigencytokine patterns in noninvasive upper airway samples simulate cytokine patterns in lower airways.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Tabagismo , Citocinas , Humanos , Sistema Respiratório , Produtos do Tabaco/efeitos adversos , Uso de Tabaco
8.
Chem Res Toxicol ; 35(12): 2210-2213, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36373932

RESUMO

A weighted chemical coexpression network analysis (WCCNA) was utilized to identify chemicals co-modulated to variable burning of anthropogenic materials and to link chemicals to biological responses (lung toxicity and mutagenicity). Polyaromatic hydrocarbons (PAHs) were co-modulated with increased concentrations in flaming smoke particulate matter (PM) from the burning of plastic-containing materials and showed significant association with increased neutrophil influx, cytokine levels, and mutagenicity. Inorganic elements were co-modulated with increased concentrations in flaming plywood and cardboard smoke PM and showed significant association with increased protein and albumin levels. This study shows the potential for using a computational network analysis to identify and prioritize hazardous chemical components within complex environmental mixtures and provides guidance on key chemical tracers required for intervention research to protect public health from the exposure.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/toxicidade , Fumaça/efeitos adversos , Fumaça/análise , Poluentes Atmosféricos/análise , Nicotiana , Mutagênicos/toxicidade
9.
Environ Sci Technol ; 56(23): 17131-17142, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399130

RESUMO

The prevalence of wildfires continues to grow globally with exposures resulting in increased disease risk. Characterizing these health risks remains difficult due to the wide landscape of exposures that can result from different burn conditions and fuel types. This study tested the hypothesis that biomass smoke exposures from variable fuels and combustion conditions group together based on similar transcriptional response profiles, informing which wildfire-relevant exposures may be considered as a group for health risk evaluations. Mice (female CD-1) were exposed via oropharyngeal aspiration to equal mass biomass smoke condensates produced from flaming or smoldering burns of eucalyptus, peat, pine, pine needles, or red oak species. Lung transcriptomic signatures were used to calculate transcriptomic similarity scores across exposures, which informed exposure groupings. Exposures from flaming peat, flaming eucalyptus, and smoldering eucalyptus induced the greatest responses, with flaming peat grouping with the pro-inflammatory agent lipopolysaccharide. Smoldering red oak and smoldering peat induced the least transcriptomic response. Groupings paralleled pulmonary toxicity markers, though they were better substantiated by higher data dimensionality and resolution provided through -omic-based evaluation. Interestingly, groupings based on smoke chemistry signatures differed from transcriptomic/toxicity-based groupings. Wildfire-relevant exposure groupings yield insights into risk assessment strategies to ultimately protect public health.


Assuntos
Incêndios Florestais , Feminino , Camundongos , Animais , Biomassa , Transcriptoma , Fumaça/efeitos adversos , Fumaça/análise , Solo
10.
Chem Res Toxicol ; 34(6): 1445-1455, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048650

RESUMO

Exposure to polycyclic aromatic hydrocarbons (PAHs) often occurs as complex chemical mixtures, which are linked to numerous adverse health outcomes in humans, with cancer as the greatest concern. The cancer risk associated with PAH exposures is commonly evaluated using the relative potency factor (RPF) approach, which estimates PAH mixture carcinogenic potential based on the sum of relative potency estimates of individual PAHs, compared to benzo[a]pyrene (BAP), a reference carcinogen. The present study evaluates molecular mechanisms related to PAH cancer risk through integration of transcriptomic and bioinformatic approaches in a 3D human bronchial epithelial cell model. Genes with significant differential expression from human bronchial epithelium exposed to PAHs were analyzed using a weighted gene coexpression network analysis (WGCNA) two-tiered approach: first to identify gene sets comodulated to RPF and second to link genes to a more comprehensive list of regulatory values, including inhalation-specific risk values. Over 3000 genes associated with processes of cell cycle regulation, inflammation, DNA damage, and cell adhesion processes were found to be comodulated with increasing RPF with pathways for cell cycle S phase and cytoskeleton actin identified as the most significantly enriched biological networks correlated to RPF. In addition, comodulated genes were linked to additional cancer-relevant risk values, including inhalation unit risks, oral cancer slope factors, and cancer hazard classifications from the World Health Organization's International Agency for Research on Cancer (IARC). These gene sets represent potential biomarkers that could be used to evaluate cancer risk associated with PAH mixtures. Among the values tested, RPF values and IARC categorizations shared the most similar responses in positively and negatively correlated gene modules. Together, we demonstrated a novel manner of integrating gene sets with chemical toxicity equivalence estimates through WGCNA to understand potential mechanisms.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Redes Reguladoras de Genes , Neoplasias/induzido quimicamente , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Células Cultivadas , Humanos , Neoplasias/genética
11.
Environ Sci Technol ; 54(21): 13807-13816, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064461

RESUMO

Atmospheric pollution represents a complex mixture of air chemicals that continually interact and transform, making it difficult to accurately evaluate associated toxicity responses representative of real-world exposure. This study leveraged data from a previously published article and reevaluated lung cell transcriptional response induced by outdoor atmospheric pollution mixtures using field-based exposure conditions in the industrialized Houston Ship Channel. The tested hypothesis was that individual and co-occurring chemicals in the atmosphere relate to altered expression of critical genes involved in inflammation and cancer-related processes in lung cells. Human lung cells were exposed at an air-liquid interface to ambient air mixtures for 4 h, with experiments replicated across 5 days. Real-time monitoring of primary and secondary gas-phase pollutants, as well as other atmospheric conditions, was simultaneously conducted. Transcriptional analysis of exposed cells identified critical genes showing differential expression associated with both individual and chemical mixtures. The individual pollutant identified with the largest amount of associated transcriptional response was benzene. Tumor necrosis factor (TNF) and interferon regulatory factor 1 (IRFN1) were identified as key upstream transcription factor regulators of the cellular response to benzene. This study is among the first to measure lung cell transcriptional responses in relation to real-world, gas-phase air mixtures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Pulmão , Texas
13.
Toxicol Appl Pharmacol ; 378: 114635, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233757

RESUMO

During pregnancy, the placenta is critical for the regulation of maternal homeostasis and fetal growth and development. Exposures to environmental chemicals during pregnancy can be detrimental to the health of the placenta and therefore adversely impact maternal and fetal health. Though research on placental-derived developmental toxicity is expanding, testing is limited by the resources required for traditional test methods based on whole animal experimentation. Alternative strategies utilizing in vitro methods are well suited to contribute to more efficient screening of chemical toxicity and identification of biological mechanisms underlying toxicity outcomes. This review aims to summarize methods that can be used to evaluate toxicity resulting from exposures during the prenatal period, with a focus on newer in vitro methods centered on placental toxicity. The following key aspects are reviewed: (i) traditional test methods based on animal developmental toxicity testing, (ii) in vitro methods using monocultures and explant models, as well as more recently developed methods, including co-cultures, placenta-on-a-chip, and 3-dimensional (3D) cell models, (iii) endpoints that are commonly measured using in vitro designs, and (iv) the translation of in vitro methods into chemical evaluations and risk assessment applications. We conclude that findings from in vitro placental models can contribute to the screening of potentially hazardous chemicals, elucidation of chemical mechanism of action, incorporation into adverse outcome pathways, estimation of doses eliciting toxicity, derivation of extrapolation factors, and characterization of overall risk of adverse outcomes, representing key components of chemical regulation in the 21st century.


Assuntos
Poluentes Ambientais/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Placenta/efeitos dos fármacos , Animais , Feminino , Humanos , Técnicas In Vitro/métodos , Gravidez , Medição de Risco , Testes de Toxicidade/métodos
14.
Toxicol Pathol ; 47(7): 851-864, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31558096

RESUMO

Carcinogenesis of the small intestine is rare in humans and rodents. Oral exposure to hexavalent chromium (Cr(VI)) and the fungicides captan and folpet induce intestinal carcinogenesis in mice. Previously (Toxicol Pathol. 330:48-52), we showed that B6C3F1 mice exposed to carcinogenic concentrations of Cr(VI), captan, or folpet for 28 days exhibited similar histopathological responses including villus enterocyte cytotoxicity and regenerative crypt epithelial hyperplasia. Herein, we analyze transcriptomic responses from formalin-fixed, paraffin-embedded duodenal sections from the aforementioned study. TempO-Seq technology and the S1500+ gene set were used to analyze transcription responses. Transcriptional responses were similar between all 3 agents; gene-level comparison identified 126/546 (23%) differentially expressed genes altered in the same direction, with a total of 25 upregulated pathways. These changes were related to cellular metabolism, stress, inflammatory/immune cell response, and cell proliferation, including upregulation in hypoxia inducible factor 1 (HIF-1) and activator protein 1 (AP1) signaling pathways, which have also been shown to be related to intestinal injury and angiogenesis/carcinogenesis. The similar molecular-, cellular-, and tissue-level changes induced by these 3 carcinogens can be informative for the development of an adverse outcome pathway for intestinal cancer.


Assuntos
Captana/toxicidade , Carcinógenos/toxicidade , Cromo/toxicidade , Intestino Delgado/efeitos dos fármacos , Ftalimidas/toxicidade , Animais , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos
16.
J Appl Toxicol ; 38(3): 351-365, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29064106

RESUMO

The current US Environmental Protection Agency (EPA) reference dose (RfD) for oral exposure to chromium, 0.003 mg kg-1  day-1 , is based on a no-observable-adverse-effect-level from a 1958 bioassay of rats exposed to ≤25 ppm hexavalent chromium [Cr(VI)] in drinking water. EPA characterizes the confidence in this RfD as "low." A more recent cancer bioassay indicates that Cr(VI) in drinking water is carcinogenic to mice at ≥30 ppm. To assess whether the existing RfD is health protective, neoplastic and non-neoplastic lesions from the 2 year cancer bioassay were modeled in a three-step process. First, a rodent physiological-based pharmacokinetic (PBPK) model was used to estimate internal dose metrics relevant to each lesion. Second, benchmark dose modeling was conducted on each lesion using the internal dose metrics. Third, a human PBPK model was used to estimate the daily mg kg-1 dose that would produce the same internal dose metric in both normal and susceptible humans. Mechanistic research into the mode of action for Cr(VI)-induced intestinal tumors in mice supports a threshold mechanism involving intestinal wounding and chronic regenerative hyperplasia. As such, an RfD was developed using incidence data for the precursor lesion diffuse epithelial hyperplasia. This RfD was compared to RfDs for other non-cancer endpoints; all RfD values ranged 0.003-0.02 mg kg-1  day-1 . The lowest of these values is identical to EPA's existing RfD value. Although the RfD value remains 0.003 mg kg-1  day-1 , the confidence is greatly improved due to the use of a 2-year bioassay, mechanistic data, PBPK models and benchmark dose modeling.


Assuntos
Bioensaio , Testes de Carcinogenicidade/métodos , Cromo/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias Intestinais/induzido quimicamente , Modelos Biológicos , Administração Oral , Animais , Bioensaio/normas , Calibragem , Testes de Carcinogenicidade/normas , Cromo/administração & dosagem , Cromo/farmacocinética , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/farmacocinética , Feminino , Humanos , Neoplasias Intestinais/patologia , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Padrões de Referência , Medição de Risco , Especificidade da Espécie , Estados Unidos , United States Environmental Protection Agency
17.
Chem Res Toxicol ; 30(10): 1911-1920, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28927277

RESUMO

Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) µg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) µg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 µg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.


Assuntos
Arsênio/análise , Benchmarking , Epigenômica , Modelos Químicos , Proteoma , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Transcriptoma , Adulto Jovem
18.
Chem Res Toxicol ; 28(6): 1144-55, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039340

RESUMO

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.


Assuntos
Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Urotélio/citologia , Urotélio/efeitos dos fármacos , Adulto , Idoso , Arsênio/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Bexiga Urinária/patologia , Adulto Jovem
19.
Am J Physiol Lung Cell Mol Physiol ; 306(12): L1129-37, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771714

RESUMO

Ozone (O3) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying O3-induced health effects remain understudied. MicroRNAs (miRNAs) are epigenetic regulators of genomic response to environmental insults and unstudied in relationship to O3 inhalation exposure. Our objective was to test whether O3 inhalation exposure significantly alters miRNA expression profiles within the human bronchial airways. Twenty healthy adult human volunteers were exposed to 0.4 ppm O3 for 2 h. Induced sputum samples were collected from each subject 48 h preexposure and 6 h postexposure for evaluation of miRNA expression and markers of inflammation in the airways. Genomewide miRNA expression profiles were evaluated by microarray analysis, and in silico predicted mRNA targets of the O3-responsive miRNAs were identified and validated against previously measured O3-induced changes in mRNA targets. Biological network analysis was performed on the O3-associated miRNAs and mRNA targets to reveal potential associated response signaling and functional enrichment. Expression analysis of the sputum samples revealed that O3 exposure significantly increased the expression levels of 10 miRNAs, namely miR-132, miR-143, miR-145, miR-199a*, miR-199b-5p, miR-222, miR-223, miR-25, miR-424, and miR-582-5p. The miRNAs and their predicted targets were associated with a diverse range of biological functions and disease signatures, noted among them inflammation and immune-related disease. The present study shows that O3 inhalation exposure disrupts select miRNA expression profiles that are associated with inflammatory and immune response signaling. These findings provide novel insight into epigenetic regulation of responses to O3 exposure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Epigênese Genética/efeitos dos fármacos , MicroRNAs/metabolismo , Ozônio/efeitos adversos , Sistema Respiratório/metabolismo , Adolescente , Adulto , Ar , Epigênese Genética/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
20.
Int J Mol Sci ; 15(12): 22374-91, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25479081

RESUMO

There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans.


Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Doenças Transmissíveis/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Glucocorticoides/genética , Transdução de Sinais/genética , Estudos de Coortes , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Gravidez , Receptores de Glucocorticoides/metabolismo , Reprodutibilidade dos Testes , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Toxicogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA