Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2311118120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695892

RESUMO

The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.


Assuntos
Comportamento Aditivo , Núcleo Accumbens , Animais , Humanos , Neuropeptídeo Y , Encéfalo , Obesidade , Dopamina , Etanol
2.
J Neurosci Res ; 101(6): 881-900, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647571

RESUMO

Aging and neurodegenerative disorders, such as Alzheimer's disease (AD), trigger an immune response known as glial activation in the brain. Recent evidence indicates species differences in inflammatory responses to AD pathology, highlighting the need for additional comparative studies to further understand human-specific neuropathologies. In the present study, we report on the occurrence of astrogliosis, microglial activation, and their relationship with age and AD-like pathology in a cohort of male and female chimpanzees (Pan troglodytes). Chimpanzees with severe astrogliosis exhibited widespread upregulation of hypertrophic astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) throughout all layers of the dorsolateral prefrontal cortex and a loss of the interlaminar palisade. In addition, extreme astrogliosis was associated with increased astrocyte density in the absence of significant microglial activation and AD lesions. A shift from decreased resting to increased phagocytotic microglia occurred with aging, although proliferation was absent and no changes in astrogliosis was observed. Vascular amyloid correlated with decreased astrocyte and microglia densities, while tau lesions were associated with morphological changes in microglia and greater total glia density and glia: neuron ratio. These results further our understanding of inflammatory processes within the chimpanzee brain and provide comparative data to improve our understanding of human aging and neuropathological processes.


Assuntos
Doença de Alzheimer , Animais , Masculino , Humanos , Feminino , Doença de Alzheimer/metabolismo , Pan troglodytes , Microglia/metabolismo , Gliose/patologia , Encéfalo/metabolismo , Astrócitos/metabolismo
3.
Cereb Cortex ; 30(10): 5604-5615, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32488266

RESUMO

Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II-III and infragranular layers V-VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans. We found that synapse densities were relatively constant across these levels of the cortical visual processing hierarchy and did not significantly differ with brain mass, varying by only 1.9-fold across species. We also found that neuron densities decreased in relation to brain enlargement. Consequently, these data show that the number of synapses per neuron significantly rises as a function of brain expansion in these neocortical areas of primates. Humans displayed the highest number of synapses per neuron, but these values were generally within expectations based on brain size. The metabolic and biophysical constraints that regulate uniformity of synapse density, therefore, likely underlie a key principle of neuronal connectivity scaling in primate neocortical evolution.


Assuntos
Evolução Biológica , Neocórtex/citologia , Neurônios/citologia , Primatas/anatomia & histologia , Sinapses , Adulto , Animais , Feminino , Humanos , Masculino , Córtex Visual Primário/citologia , Lobo Temporal/citologia , Adulto Jovem
4.
Am J Primatol ; 83(11): e23264, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33899958

RESUMO

Several primate species have been shown to exhibit age-related changes in cognition, brain, and behavior. However, severe neurodegenerative illnesses, such as Alzheimer's disease (AD), were once thought to be uniquely human. Recently, some chimpanzees naturally were documented to develop both neurofibrillary tangles and amyloid plaques, the main characteristics of AD pathology. In addition, like humans and other primates, chimpanzees show similar declines in cognition and motor function with age. Here, we used voxel-based morphometry to examine the relationships among gray matter volume, age, and cognition using magnetic resonance imaging scans previously acquired from chimpanzees (N = 216). We first determined the relationship between age and gray matter volume, identifying the regions that declined with age. With a subset of our sample (N = 103), we also determined differences in gray matter volume between older chimpanzees with higher cognition scores than expected for their age, and older chimpanzees with lower than expected scores. Finally, we ran a conjunction analysis to determine any overlap in brain regions between these two analyses. We found that as chimpanzees age, they lose gray matter in regions associated with cognition. In addition, cognitively healthy older chimpanzees (those performing better for their age) have greater gray matter volume in many brain regions compared with chimpanzees who underperform for their age. Finally, the conjunction analysis revealed that regions of age-related decline overlap with the regions that differ between cognitively healthy chimpanzees and those who underperform. This study provides further evidence that chimpanzees are an important model for research on the neurobiology of aging. Future studies should investigate the effects of cognitive stimulation on both cognitive performance and brain structure in aging nonhuman primates.


Assuntos
Substância Cinzenta , Pan troglodytes , Envelhecimento , Animais , Encéfalo , Córtex Cerebral , Cognição , Substância Cinzenta/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 115(6): E1108-E1116, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358369

RESUMO

It has always been difficult to account for the evolution of certain human characters such as language, empathy, and altruism via individual reproductive success. However, the striatum, a subcortical region originally thought to be exclusively motor, is now known to contribute to social behaviors and "personality styles" that may link such complexities with natural selection. We here report that the human striatum exhibits a unique neurochemical profile that differs dramatically from those of other primates. The human signature of elevated striatal dopamine, serotonin, and neuropeptide Y, coupled with lowered acetylcholine, systematically favors externally driven behavior and greatly amplifies sensitivity to social cues that promote social conformity, empathy, and altruism. We propose that selection induced an initial form of this profile in early hominids, which increased their affiliative behavior, and that this shift either preceded or accompanied the adoption of bipedality and elimination of the sectorial canine. We further hypothesize that these changes were critical for increased individual fitness and promoted the adoption of social monogamy, which progressively increased cooperation as well as a dependence on tradition-based cultural transmission. These eventually facilitated the acquisition of language by elevating the reproductive advantage afforded those most sensitive to social cues.


Assuntos
Evolução Biológica , Corpo Estriado/fisiologia , Neuroquímica , Seleção Genética , Comportamento Social , Altruísmo , Animais , Cães , Humanos , Personalidade , Primatas , Conformidade Social
6.
Mol Cell Neurosci ; 82: 137-142, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461219

RESUMO

The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells.


Assuntos
L-Lactato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Neocórtex/metabolismo , Animais , Corpo Estriado/metabolismo , Feminino , Isoenzimas/metabolismo , Lactato Desidrogenase 5 , Masculino , Primatas , Sinaptossomos/metabolismo
7.
Brain Behav Evol ; 89(1): 48-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125804

RESUMO

In the effort to understand the evolution of mammalian brains, we have found that common relationships between brain structure mass and numbers of nonneuronal (glial and vascular) cells apply across eutherian mammals, but brain structure mass scales differently with numbers of neurons across structures and across primate and nonprimate clades. This suggests that the ancestral scaling rules for mammalian brains are those shared by extant nonprimate eutherians - but do these scaling relationships apply to marsupials, a sister group to eutherians that diverged early in mammalian evolution? Here we examine the cellular composition of the brains of 10 species of marsupials. We show that brain structure mass scales with numbers of nonneuronal cells, and numbers of cerebellar neurons scale with numbers of cerebral cortical neurons, comparable to what we have found in eutherians. These shared scaling relationships are therefore indicative of mechanisms that have been conserved since the first therians. In contrast, while marsupials share with nonprimate eutherians the scaling of cerebral cortex mass with number of neurons, their cerebella have more neurons than nonprimate eutherian cerebella of a similar mass, and their rest of brain has fewer neurons than eutherian structures of a similar mass. Moreover, Australasian marsupials exhibit ratios of neurons in the cerebral cortex and cerebellum over the rest of the brain, comparable to artiodactyls and primates. Our results suggest that Australasian marsupials have diverged from the ancestral Theria neuronal scaling rules, and support the suggestion that the scaling of average neuronal cell size with increasing numbers of neurons varies in evolution independently of the allocation of neurons across structures.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Cerebelo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Marsupiais/anatomia & histologia , Animais , Encéfalo/citologia , Contagem de Células , Tamanho Celular , Cerebelo/citologia , Córtex Cerebral/citologia , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 116(29): 14401-14403, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31221753
9.
J Hum Evol ; 94: 45-52, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27178457

RESUMO

Foramen magnum position has traditionally been used as an indicator of bipedality because it has been thought to favor a more "balanced" skull position. Here, we analyzed foramen magnum angle (FMA) in relation to locomotion in three mammalian orders that include bipedal or orthograde species in addition to quadrupedal or pronograde species. In marsupials and strepsirrhine primates, we found that there is no relationship between locomotor pattern and FMA. In rodents, we found that there is a significant difference in FMA between bipedal and quadrupedal rodents. However, when these species are analyzed in the context of enlarged auditory bullae, this relationship is no longer significant. Additionally, we find a significant relationship between relative brain size and FMA in strepsirrhine primates. Taken together, these data indicate that several developmental modules of the cranium influence FMA, but that locomotion does not. We caution that basicranial evolution is a complex phenomenon that must be explored in the context of each taxon's unique evolutionary and developmental history.


Assuntos
Forame Magno/anatomia & histologia , Locomoção , Marsupiais/anatomia & histologia , Roedores/anatomia & histologia , Strepsirhini/anatomia & histologia , Animais , Feminino , Masculino , Marsupiais/fisiologia , Roedores/fisiologia , Strepsirhini/fisiologia
10.
Cereb Cortex ; 25(6): 1596-607, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24408959

RESUMO

Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory.


Assuntos
Evolução Biológica , Expressão Gênica , Neocórtex/metabolismo , Receptores de Glutamato/genética , Sinapses/genética , Transmissão Sináptica/fisiologia , Animais , Bases de Dados Bibliográficas/estatística & dados numéricos , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Filogenia , Primatas , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais/genética , Estatísticas não Paramétricas , Sinapses/metabolismo
11.
Proc Biol Sci ; 282(1818): 20151535, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511047

RESUMO

Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.


Assuntos
Axônios/ultraestrutura , Encéfalo/anatomia & histologia , Corpo Caloso/fisiologia , Condução Nervosa , Primatas/anatomia & histologia , Animais , Evolução Biológica , Encéfalo/fisiologia , Corpo Caloso/ultraestrutura , Feminino , Lateralidade Funcional , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Filogenia , Primatas/fisiologia
12.
Brain Behav Evol ; 86(3-4): 210-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26613530

RESUMO

Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.


Assuntos
Neurônios/citologia , Córtex Somatossensorial/citologia , Trichechus manatus/anatomia & histologia , Animais , Contagem de Células , Elefantes/anatomia & histologia , Feminino , Imuno-Histoquímica , Especificidade da Espécie , Xenarthra/anatomia & histologia
13.
Gen Comp Endocrinol ; 217-218: 10-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25980685

RESUMO

Black rhinoceros (rhinos) living in zoos express a host of unusual disease syndromes that are associated with increased morbidity and mortality, including hemolytic anemia, rhabdomyolysis, hepatopathy and ulcerative skin disease, hypophosphatemia and iron overload. We hypothesized that iron overload is a consequence and indicator of disturbances related to inflammation and insulin/glucose metabolism. The objectives of this study were to: (1) generate the first baseline information on biomarkers of inflammation (tumor necrosis factor alpha [TNFα], serum amyloid A [SAA]), insulin sensitivity (insulin, glucose and proxy calculations of insulin sensitivity), phosphate and iron stores (ferritin) using banked serum from free-ranging black rhinos; and (2) then compare serum biomarkers between zoo-managed (n=86 individuals) and free-ranging (n=120) animals. Enzyme immunoassays were validated for serum and then biomarker levels analyzed using mixed models while controlling for sex, age and year of sample collection. Concentrations of TNFα, SAA, insulin and insulin-to glucose ratio were higher (P<0.05) in black rhinos managed in ex situ conditions compared to free-living counterparts. Findings indicate that the captive environment is contributing to increased inflammation and decreased insulin sensitivity in this endangered species.


Assuntos
Animais Selvagens/metabolismo , Animais de Zoológico/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Resistência à Insulina , Insulina/farmacologia , Perissodáctilos/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/etiologia , Masculino
14.
Brain Behav Evol ; 83(3): 216-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24686273

RESUMO

With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.


Assuntos
Evolução Biológica , Corpo Estriado/enzimologia , Lactato Desidrogenases/metabolismo , Neocórtex/enzimologia , Primatas/metabolismo , Idoso , Animais , Corpo Estriado/anatomia & histologia , Feminino , Humanos/anatomia & histologia , Humanos/metabolismo , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Masculino , Pessoa de Meia-Idade , Neocórtex/anatomia & histologia , Tamanho do Órgão , Filogenia , Terminações Pré-Sinápticas/enzimologia , Primatas/anatomia & histologia , Prosencéfalo/anatomia & histologia , Prosencéfalo/enzimologia , Especificidade da Espécie , Sinaptossomos/enzimologia
15.
Elife ; 132024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275218

RESUMO

Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.


Assuntos
Encéfalo , Primatas , Humanos , Animais , Filogenia , Primatas/genética , Encéfalo/fisiologia , Evolução Molecular , Pan troglodytes/genética , Expressão Gênica , Evolução Biológica
16.
J Comp Neurol ; 532(5): e25618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686628

RESUMO

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.


Assuntos
Canidae , Núcleo Caudado , Felidae , Imageamento por Ressonância Magnética , Animais , Núcleo Caudado/anatomia & histologia , Núcleo Caudado/diagnóstico por imagem , Felidae/anatomia & histologia , Felidae/fisiologia , Canidae/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Masculino , Comportamento Animal/fisiologia , Feminino , Especificidade da Espécie , Encéfalo/anatomia & histologia
17.
J Hum Evol ; 64(4): 263-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23466178

RESUMO

The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body's homeostatic state.We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent=1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent=1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee.


Assuntos
Córtex Cerebral/fisiologia , Primatas/fisiologia , Comportamento Social , Animais , Feminino , Humanos , Masculino , Especificidade da Espécie
18.
Am J Primatol ; 75(5): 415-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23042407

RESUMO

We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system.


Assuntos
Córtex Cerebral/fisiologia , Haplorrinos/fisiologia , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Adulto , Animais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neuropeptídeo Y/imunologia
19.
Neurobiol Aging ; 126: 91-102, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958104

RESUMO

Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years. We found that chimpanzees showed global and region-specific thinning of cortex with increasing age. Further, within the elderly cohort, chimpanzees that performed better than average had thicker cortex in frontal, temporal and parietal regions compared to chimpanzees that performed worse than average. Independent of age, we also found sex differences in cortical thickness in 4 brain regions. Males had higher adjusted cortical thickness scores for the caudal anterior cingulate, rostral anterior cingulate, and medial orbital frontal while females had higher values for the inferior parietal cortex. We found no evidence that increasing age nor sex was associated with asymmetries in cortical thickness. Moreover, age-related differences in cognitive function were only weakly associated with asymmetries in cortical thickness. In summary, as has been reported in humans and other primates, elderly chimpanzees show thinner cortex and variation in cortical thickness is associated with general cognitive functions.


Assuntos
Doença de Alzheimer , Pan troglodytes , Animais , Humanos , Masculino , Feminino , Idoso , Lobo Parietal , Cognição , Encéfalo , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia
20.
Brain Struct Funct ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889302

RESUMO

Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA