Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 6884-6897, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517367

RESUMO

CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted.

2.
ACS Phys Chem Au ; 4(5): 476-489, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39364351

RESUMO

Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs2AgBiCl6 DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental-computational approach is employed to investigate the optoelectronic properties of pure and doped Cs2AgBiCl6 (Fe-Cs2AgBiCl6) perovskites. Successful incorporation of Fe3+ ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe-Cs2AgBiCl6 DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton-phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA