Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 583(7816): 385-390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669694

RESUMO

High-speed actuation of laser frequency1 is critical in applications using lasers and frequency combs2,3, and is a prerequisite for phase locking, frequency stabilization and stability transfer among optical carriers. For example, high-bandwidth feedback control of frequency combs is used in optical-frequency synthesis4, frequency division5 and optical clocks6. Soliton microcombs7,8 have emerged as chip-scale frequency comb sources, and have been used in system-level demonstrations9,10. Yet integrated microcombs using thermal heaters have limited actuation bandwidths11,12 of up to 10 kilohertz. Consequently, megahertz-bandwidth actuation and locking of microcombs have only been achieved with off-chip bulk component modulators. Here we demonstrate high-speed soliton microcomb actuation using integrated piezoelectric components13. By monolithically integrating AlN actuators14 on ultralow-loss Si3N4 photonic circuits15, we demonstrate voltage-controlled soliton initiation, tuning and stabilization with megahertz bandwidth. The AlN actuators use 300 nanowatts of power and feature bidirectional tuning, high linearity and low hysteresis. They exhibit a flat actuation response up to 1 megahertz-substantially exceeding bulk piezo tuning bandwidth-that is extendable to higher frequencies by overcoming coupling to acoustic contour modes of the chip. Via synchronous tuning of the laser and the microresonator, we exploit this ability to frequency-shift the optical comb spectrum (that is, to change the comb's carrier-envelope offset frequency) and make excursions beyond the soliton existence range. This enables a massively parallel frequency-modulated engine16,17 for lidar (light detection and ranging), with increased frequency excursion, lower power and elimination of channel distortions resulting from the soliton Raman self-frequency shift. Moreover, by modulating at a rate matching the frequency of high-overtone bulk acoustic resonances18, resonant build-up of bulk acoustic energy allows a 14-fold reduction of the required driving voltage, making it compatible with CMOS (complementary metal-oxide-semiconductor) electronics. Our approach endows soliton microcombs with integrated, ultralow-power and fast actuation, expanding the repertoire of technological applications of microcombs.

2.
Nano Lett ; 21(7): 2709-2718, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33754742

RESUMO

Monolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 106 in the telecommunication O- to E-bands. This paves the way for low-loss, hybrid photonic integrated circuits with layered semiconductors, not requiring heterogeneous wafer bonding.

3.
Opt Express ; 28(3): 2714-2721, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121953

RESUMO

Photonic chip-based soliton microcombs have shown rapid progress and have already been used in many system-level applications. There has been substantial progress in realizing soliton microcombs that rely on compact laser sources, culminating in devices that only utilize a semiconductor gain chip or a self-injection-locked laser diode as the pump source. However, generating single solitons with electronically detectable repetition rates from a compact laser module has remained challenging. Here we demonstrate a current-initiated, Si3N4 chip-based, 99-GHz soliton microcomb driven directly by a compact, semiconductor-based laser. This approach does not require any complex soliton tuning techniques, and single solitons can be accessed by tuning the laser current. Further, we demonstrate a generic, simple, yet reliable, packaging technique to facilitate the fiber-chip interface, which allows building a compact soliton microcomb package that can benefit from the fiber systems operating at high power (> 100 mW). Both techniques can exert immediate impact on chip-based nonlinear photonic applications that require high input power, high output power, and interfacing chip-based devices to mature fiber systems.

4.
Phys Rev Lett ; 124(1): 013902, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976733

RESUMO

Silicon nitride (Si_{3}N_{4}) has emerged as a promising material for integrated nonlinear photonics and has been used for broadband soliton microcombs and low-pulse-energy supercontinuum generation. Therefore, understanding all nonlinear optical properties of Si_{3}N_{4} is important. So far, only stimulated Brillouin scattering (SBS) has not yet been reported. Here we observe, for the first time, backward SBS in fully cladded Si_{3}N_{4} waveguides. The Brillouin gain spectrum exhibits an unusual multipeak structure resulting from hybridization with high-overtone bulk acoustic resonances of the silica cladding. The reported intrinsic Si_{3}N_{4} Brillouin gain at 25 GHz is estimated as 4×10^{-13} m/W. Moreover, the magnitude of the Si_{3}N_{4} photoelastic constant is estimated as |p_{12}|=0.047±0.004, which is nearly 6 times smaller than for silica. Since SBS imposes an optical power limitation for waveguides, our results explain the capability of Si_{3}N_{4} to handle high optical power, central for integrated nonlinear photonics.

5.
Opt Lett ; 43(14): 3200-3203, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004531

RESUMO

Efficient light coupling to integrated photonic devices is of key importance to a wide variety of applications. "Inverse nanotapers" are widely used, in which the waveguide width is reduced to match an incident mode. Here, we demonstrate novel "double inverse" tapers, in which we reduce both the waveguide height and width. We demonstrate >45% chip-through coupling efficiency for both the transverse electric and transverse magnetic polarizations in Si3N4 tapers of >500 nm width, in comparison to regular inverse tapers that necessitate <100 nm width. The double inverse tapers show polarization-independent coupling and allow the fabrication using photolithography, relevant for applications at near-infrared and visible wavelengths, e.g., supercontinuum and soliton microcomb generation.

8.
Science ; 383(6679): 168-173, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207019

RESUMO

The short de Broglie wavelength and strong interaction empower free electrons to probe structures and excitations in materials and biomolecules. Recently, electron-photon interactions have enabled new optical manipulation schemes for electron beams. In this work, we demonstrate the interaction of electrons with nonlinear optical states inside a photonic chip-based microresonator. Optical parametric processes give rise to spatiotemporal pattern formation corresponding to coherent or incoherent optical frequency combs. We couple such "microcombs" to electron beams, demonstrate their fingerprints in the electron spectra, and achieve ultrafast temporal gating of the electron beam. Our work demonstrates the ability to access solitons inside an electron microscope and extends the use of microcombs to spatiotemporal control of electrons for imaging and spectroscopy.

9.
Nat Commun ; 12(1): 2236, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863901

RESUMO

Low-loss photonic integrated circuits and microresonators have enabled a wide range of applications, such as narrow-linewidth lasers and chip-scale frequency combs. To translate these into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators with quality factors Q > 10 × 106 can be attained at die-level throughput. Yet, current fabrication techniques do not have sufficiently high yield and performance for existing and emerging applications, such as integrated travelling-wave parametric amplifiers that require meter-long photonic circuits. Here we demonstrate a fabrication technology that meets all requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 × 106, corresponding to 1.0 dB m-1 optical loss, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances, and confirmed via cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB m-1 loss in dies of only 5 × 5 mm2 size. Using a response measurement self-calibrated via the Kerr nonlinearity, we reveal that the intrinsic absorption-limited Q factor of our Si3N4 microresonators can exceed 2 × 108. This absorption loss is sufficiently low such that the Kerr nonlinearity dominates the microresonator's response even in the audio frequency band. Transferring this Si3N4 technology to commercial foundries can significantly improve the performance and capabilities of integrated photonics.

10.
Nat Commun ; 11(1): 4377, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873798

RESUMO

The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb-based radiofrequency filters have required programmable pulse shapers, which inevitably increase the system cost, footprint, and complexity. Here, by leveraging the smooth spectral envelope of single solitons, we demonstrate microcomb-based radiofrequency filters free from any additional pulse shaping. More importantly, we achieve all-optical reconfiguration of the radiofrequency filters by exploiting the intrinsically rich soliton configurations. Specifically, we harness the perfect soliton crystals to multiply the comb spacing thereby dividing the filter passband frequencies. Also, the versatile spectral interference patterns of two solitons enable wide reconfigurability of filter passband frequencies, according to their relative azimuthal angles within the round-trip. The proposed schemes demand neither an interferometric setup nor another pulse shaper for filter reconfiguration, providing a simplified synthesis of widely reconfigurable microcomb-based radiofrequency filters.

11.
Nat Commun ; 10(1): 1623, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944332

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements, which incorrectly read 'This publication was supported by Contract HR0011-15-C-0055 (DODOS) from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO).' The correct version states 'Microsystems Technology Office (MTO)' in place of 'Defense Sciences Office (DSO)'. This has been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 10(1): 680, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737384

RESUMO

Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm3, and does not require on-chip filters and heaters, thus simplifying the integrated microcomb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA