Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Orig Life Evol Biosph ; 53(1-2): 43-60, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37243884

RESUMO

RNA World Hypothesis is centred around the idea of a period in the early history of life's origin, wherein nonenzymatic oligomerization and replication of RNA resulted in functional ribozymes. Previous studies in this endeavour have demonstrated template-directed primer extension using chemically modified nucleotides and primers. Nonetheless, similar studies that used non-activated nucleotides led to the formation of RNA only with abasic sites. In this study, we report template-directed primer extension with prebiotically relevant cyclic nucleotides, under dehydration-rehydration (DH-RH) cycles occurring at high temperature (90 °C) and alkaline conditions (pH 8). 2'-3' cyclic nucleoside monophosphates (cNMP) resulted in primer extension, while 3'-5' cNMP failed to do so. Intact extension of up to two nucleotide additions was observed with both canonical hydroxy-terminated (OH-primer) and activated amino-terminated (NH2-primer) primers. We demonstrate primer extension reactions using both purine and pyrimidine 2'-3' cNMPs, with higher product yield observed during cAMP additions. Further, the presence of lipid was observed to significantly enhance the extended product in cCMP reactions. In all, our study provides a proof-of-concept for nonenzymatic primer extension of RNA, using intrinsically activated prebiotically relevant cyclic nucleotides as monomers.


Assuntos
Nucleotídeos Cíclicos , Nucleotídeos , RNA/genética
2.
Chembiochem ; 23(8): e202200013, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35233914

RESUMO

Metal ions are known to catalyze certain prebiotic reactions. However, the transition from metal ions to extant metalloenzymes remains unclear. Porphyrins are found ubiquitously in the catalytic core of many ancient metalloenzymes. In this study, we evaluated the influence of porphyrin-based organic scaffold, on the catalysis, emergence and putative molecular evolution of prebiotic metalloporphyrins. We studied the effect of porphyrins on the transition metal ion-mediated oxidation of hydroquinone (HQ). We report a change in the catalytic activity of the metal ions in the presence of porphyrin. This was observed to be facilitated by the coordination between metal ions and porphyrins or by the formation of non-coordinated complexes. The metal-porphyrin complexes also oxidized NADH, underscoring its versatility at oxidizing more than one substrate. Our study highlights the selective advantage that some of the metal ions would have had in the presence of porphyrin, underscoring their role in shaping the evolution of protometalloenzymes.


Assuntos
Metaloporfirinas , Metaloproteínas , Porfirinas , Catálise , Íons , Metaloporfirinas/química , Metais/química , Porfirinas/química , Prebióticos
3.
Chembiochem ; 23(24): e202200371, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35968882

RESUMO

Prebiotically plausible single-chain amphiphiles are enticing as model protocellular compartments to study the emergence of cellular life, owing to their self-assembling properties. Here, we investigated the self-assembly behaviour of mono-N-dodecyl phosphate (DDP) and mixed systems of DDP with 1-dodecanol (DDOH) at varying pH conditions. Membranes composed of DDP showed pH-responsive vesicle formation in a wide range of pH with a low critical bilayer concentration (CBC). Further, the addition of DDOH to DDP membrane system enhanced vesicle formation and stability in alkaline pH regimes. We also compared the high-temperature behaviour of DDP and DDP:DDOH membranes with conventional fatty acid membranes. Both, DDP and DDP:DDOH mixed membranes possess packing that is similar to decanoic acid membrane. However, the micropolarity of these systems is similar to phospholipid membranes. Finally, the pH-dependent modulation of different phospholipid membranes doped with DDP was also demonstrated to engineer tuneable membranes with potential translational implications.


Assuntos
Modelos Biológicos , Fosfatos , Membranas/química , Concentração de Íons de Hidrogênio , Fosfolipídeos
4.
RNA ; 26(6): 756-769, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205323

RESUMO

The spontaneous emergence of long RNA molecules on the early Earth, a phenomenon central to the RNA World hypothesis, continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic mononucleotides under neutral to alkaline conditions, albeit in fully dehydrated state. In this study, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, wherein starting reactants were subjected to repeated dehydration-rehydration (DH-RH) regimes. DH-RH conditions, a recurring geological theme that was prevalent on prebiotic Earth, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions. The polymerization of 2'-3' and 3'-5' cyclic nucleotides of a purine (adenosine) and a pyrimidine (cytidine) was investigated. Additionally, the effect of amphiphiles was also evaluated. Furthermore, to discern the effect of "realistic" conditions on this process, the reactions were also performed using a hot spring water sample from a candidate early Earth environment. Our study showed that the oligomerization of cyclic nucleotides under DH-RH conditions resulted in intact informational oligomers. Amphiphiles increased the stability of both the starting monomers and the resultant oligomers in selected reactions. In the hot spring reactions, both the oligomerization of nucleotides and the back hydrolysis of the resultant oligomers were pronounced. Altogether, this study demonstrates how nonenzymatic oligomerization of cyclic nucleotides, under both laboratory-simulated prebiotic conditions and in a candidate early Earth environment, could have resulted in RNA oligomers of a putative RNA World.


Assuntos
AMP Cíclico/química , CMP Cíclico/química , Fontes Termais , Temperatura Alta , Fosfatidilcolinas/química , Água/química
5.
J Membr Biol ; 253(6): 589-608, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200235

RESUMO

Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.


Assuntos
Células Artificiais/química , Membrana Celular/química , Evolução Biológica , Fenômenos Químicos
6.
J Theor Biol ; 506: 110446, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32798505

RESUMO

The RNA world hypothesis, although a viable one regarding the origin of life on earth, has so far failed to provide a compelling explanation for the synthesis of RNA enzymes from free nucleotides via abiotic processes. To tackle this long-standing problem, we develop a realistic model for the onset of the RNA world, using experimentally determined rates for polymerization reactions. We start with minimal assumptions about the initial state that only requires the presence of short oligomers or just free nucleotides and consider the effects of environmental cycling by dividing a day into a dry, semi-wet and wet phases that are distinguished by the nature of reactions they support. Long polymers, with maximum lengths sometimes exceeding 100 nucleotides, spontaneously emerge due to a combination of non-enzymatic, non-templated polymer extension and template-directed primer extension processes. The former helps in increasing the lengths of RNA strands, whereas the later helps in producing complementary copies of the strands. Strands also undergo hydrolysis in a structure-dependent manner that favour breaking of bonds connecting unpaired nucleotides. We identify the most favourable conditions needed for the emergence of ribozyme and tRNA-like structures and double stranded RNA molecules, classify all RNA strands on the basis of their secondary structures and determine their abundance in the population. Our results indicate that under suitable environmental conditions, non-enzymatic processes would have been sufficient to lead to the emergence of a variety of ribozyme-like molecules with complex secondary structures and potential catalytic functions.


Assuntos
RNA Catalítico , Minerais , Origem da Vida , RNA/genética , RNA Catalítico/genética , RNA de Transferência/genética
7.
Soft Matter ; 15(40): 8129-8136, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589218

RESUMO

Interaction between mononucleotides and lipid membranes is believed to have played an important role in the origin of life on Earth. Studies on mononucleotide-lipid systems hitherto have focused on the influence of the lipid environment on the organization of the mononucleotide molecules, and the effect of the latter on the confining medium has not been investigated in detail. We have probed the interaction of the mononucleotide, uridine 5'-monophosphate (UMP), and its disodium salt (UMPDSS) with fluid dimyristoylphosphatidylcholine (DMPC) membranes, using small-angle X-ray scattering (SAXS), cryogenic scanning electron microscopy (cryo-SEM) and computer simulations. UMP adsorbs and charges the lipid membrane, resulting in the formation of unilamellar vesicles in dilute solutions. Adsorption of UMP reduces the bilayer thickness of DMPC. UMPDSS has a much weaker effect on interbilayer interactions. These observations are in very good agreement with the results of an all-atom molecular dynamics simulation of these systems. In the presence of counterions, such as Na+, UMP forms small aggregates in water, which bind to the bilayer without significantly perturbing it. The phosphate moiety in the lipid headgroup is found to bind to the hydrogens from the sugar ring of UMP, while the choline group tends to bind to the two oxygens from the nucleotide base. These studies provide important insights into lipid-nucleotide interactions and the effect of the nucleotide on lipid membranes.

8.
Phys Chem Chem Phys ; 20(31): 20734, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30043780

RESUMO

Correction for 'Synthesis of barbituric acid containing nucleotides and their implications for the origin of primitive informational polymers' by Chaitanya V. Mungi et al., Phys. Chem. Chem. Phys., 2016, 18, 20144-20152.

9.
Methods ; 106: 86-96, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27211010

RESUMO

In vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of specific desired biochemical functions. However, this is not the only benefit we can obtain from such selection experiments. Since selection from a random library yields an unprecedented, and sometimes comprehensive, view of how a particular biochemical function is distributed across sequence space, selection experiments also provide data for creating and analyzing molecular fitness landscapes, which directly map function (phenotypes) to sequence information (genotypes). Given the importance of understanding the relationship between sequence and functional activity, reliable methods to build and analyze fitness landscapes are needed. Here, we present some statistical methods to extract this information from pools of RNA molecules. We also provide new computational tools to construct and study molecular fitness landscapes.


Assuntos
Evolução Molecular Direcionada , RNA/genética , Aptidão Genética , Genótipo , Fenótipo
10.
Phys Chem Chem Phys ; 18(30): 20144-52, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27153469

RESUMO

Given that all processes in modern biology are encoded and orchestrated by polymers, the origin of informational molecules had to be a crucial and significant step in the origin of life on Earth. An important molecule in this context is RNA that is thought to have allowed the transition from chemistry to biology. However, the RNA molecule is comprised of intramolecular bonds which are prone to hydrolysis, especially so under the harsh conditions of the early Earth. Furthermore, the formation of nucleotides with extant bases and their subsequent polymerization have both been problematic, to say the least. Alternate heterocycles, in contrast, have resulted in nucleosides in higher yields, suggesting a viable and prebiotically relevant solution to the longstanding "nucleoside problem". In the present study, we have synthesized a nucleotide using ribose 5'-monophosphate (rMP) and barbituric acid (BA), as the base analog, using dry-heating conditions that are thought to be prevalent in several regimes of the early Earth. Polymerization of the resultant monomers, i.e. BA-nucleotides, was also observed when dehydration-rehydration cycles were carried out at low pH and high temperature. The resulting RNA-like oligomers have intact bases unlike in reactions that were carried out with canonical nucleotides, which resulted in abasic sites under acidic conditions due to cleavage of the N-glycosidic linkages. Furthermore, the incorporation of BA directly into preformed sugar-phosphate backbones was also observed when rMP oligomers were subjected to heating with BA. The results from our aforementioned experiments provide preliminary evidence that BA could have been a putative precursor of modern nucleobases, which could have been incorporated into primitive informational polymers that predated the molecules of an RNA world. Moreover, they also highlight that the prebiotic soup, which would have been replete with alternate heterocycles, could have allowed the sampling of other such heterocycles, which would have had a selective advantage under pertinent selection pressures. Importantly, these kinds of processes have implications for shaping the prebiotic landscape that allowed for the emergence of primitive informational polymers of the pre-RNA world(s), prior to the emergence of a putative RNA world.

11.
J Mol Evol ; 81(3-4): 72-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26439883

RESUMO

The widely acknowledged 'RNA world' theory pertains to how life might have chemically originated on early Earth. It presumes the existence of catalytic RNAs, which were also capable of storing and propagating genetic information. Substantial research has gone into understanding how enzyme-free reactions of nucleic acids might have led to the formation of such catalytic RNA polymers. However, most of these studies involved reactions that were performed in aqueous systems devoid of any "background" molecules. This scenario is not a true representation of the complex chemical environment that might have been prevalent on prebiotic Earth. In the present study, we analyzed the effect of co-solutes ("background" molecules) on the rate and accuracy of template-directed nonenzymatic replication of RNA, in a putative RNA world. Our results suggest that presence of co-solutes in the reaction affects the addition of purine monomers across their cognate template base. Reduction in the rate of these 'fast' cognate addition reactions resulted in an apparent increase in the frequency of mismatches in the presence of co-solutes. However, reactions that involved the addition of a mismatched base were not notably affected. Such a scenario could have led to an accrual of mutations during the propagation of functional sequences on early Earth, unless the relevant sequences were separated from the bulk reaction milieu by some limiting boundary structure (e.g., a membrane). In general, our results suggest that the presence of co-solutes could have affected certain prebiotic reaction rates to a larger extent than others. Even modest changes in nonenzymatic replication reaction rates could have eventually resulted in the accumulation of greater variation in RNA sequences over prolonged time periods. It, therefore, is pertinent to account for the chemical complexity intrinsic to prebiotic environments while studying relevant nonenzymatic reactions.


Assuntos
RNA Catalítico/genética , RNA/química , Evolução Molecular , Origem da Vida , RNA/genética , Soluções/química
12.
Nucleic Acids Res ; 40(10): 4711-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319215

RESUMO

During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life.


Assuntos
DNA/química , Variação Genética , Origem da Vida , RNA/química , Composição de Bases , Simulação por Computador , Dobramento de RNA , Análise de Sequência de DNA , Moldes Genéticos
13.
ACS Omega ; 9(16): 18072-18082, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680342

RESUMO

Prebiotic genetic nucleotides (PGNs) often outcompete canonical alphabets in the formation of nucleotides and subsequent RNA oligomerization under early Earth conditions. This indicates that the early genetic code might have been dominated by pre-RNA that contained PGNs for information transfer and catalysis. Despite this, deciphering pre-RNAs' capacity to acquire function and delineating their evolutionary transition to a canonical RNA World has remained under-researched in the origins of life (OoL) field. We report the synthesis of a prebiotically relevant nucleotide (BaTP) containing the noncanonical nucleobase barbituric acid. We demonstrate the first instance of its enzymatic incorporation into an RNA, using a T7 RNA polymerase. BaTP's incorporation into baby spinach aptamer allowed it to retain its overall secondary structure and function. Finally, we also demonstrate faithful transfer of information from the pre-RNA-containing BaTP to DNA, using a high-fidelity RNA-dependent DNA polymerase, alluding to how selection pressures and complexities could have ensued during the molecular evolution of the early genetic code.

14.
J Mol Evol ; 77(3): 55-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24078151

RESUMO

The hypothesized dual roles of RNA as both information carrier and biocatalyst during the earliest stages of life require a combination of features: good templating ability (for replication) and stable folding (for ribozymes). However, this poses the following paradox: well-folded sequences are poor templates for copying, but poorly folded sequences are unlikely to be good ribozymes. Here, we describe a strategy to overcome this dilemma through G:U wobble pairing in RNA. Unlike Watson-Crick base pairs, wobble pairs contribute highly to the energetic stability of the folded structure of their sequence, but only slightly, if at all, to the stability of the folded reverse complement. Sequences in the RNA World might thereby combine stable folding of the ribozyme with an unstructured, reverse-complementary genome, resulting in a "division of labor" between the strands. We demonstrate this strategy using computational simulations of RNA folding and an experimental model of early replication, nonenzymatic template-directed RNA primer extension. Additional study is needed to solve other problems associated with a complete replication cycle, including separation of strands after copying. Interestingly, viroid RNA sequences, which have been suggested to be relics of an RNA World (Diener, Proc Natl Acad Sci USA 86:9370-9374, 1989), also show significant asymmetry in folding energy between the infectious (+) and template (-) strands due to G:U pairing, suggesting that this strategy may even be used by replicators in the present day.


Assuntos
Dobramento de RNA/fisiologia , RNA/química , RNA/genética , Pareamento de Bases , Modelos Moleculares , RNA Catalítico/química , RNA Catalítico/genética , Análise de Sequência de RNA
15.
Nucleic Acids Res ; 39(18): 8135-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724606

RESUMO

In the early 'RNA world' stage of life, RNA stored genetic information and catalyzed chemical reactions. However, the RNA world eventually gave rise to the DNA-RNA-protein world, and this transition included the 'genetic takeover' of information storage by DNA. We investigated evolutionary advantages for using DNA as the genetic material. The error rate of replication imposes a fundamental limit on the amount of information that can be stored in the genome, as mutations degrade information. We compared misincorporation rates of RNA and DNA in experimental non-enzymatic polymerization and calculated the lowest possible error rates from a thermodynamic model. Both analyses found that RNA replication was intrinsically error-prone compared to DNA, suggesting that total genomic information could increase after the transition to DNA. Analysis of the transitional RNA/DNA hybrid duplexes showed that copying RNA into DNA had similar fidelity to RNA replication, so information could be maintained during the genetic takeover. However, copying DNA into RNA was very error-prone, suggesting that attempts to return to the RNA world would result in a considerable loss of information. Therefore, the genetic takeover may have been driven by a combination of increased chemical stability, increased genome size and irreversibility.


Assuntos
Replicação do DNA , Evolução Molecular , RNA/biossíntese , DNA/química , Mutação , Nucleotídeos/análise , RNA/química , RNA Catalítico/metabolismo , Termodinâmica
16.
Life (Basel) ; 13(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36983921

RESUMO

It is not a stretch to say that the search for extraterrestrial life is possibly the biggest of the cosmic endeavors that humankind has embarked upon. With the continued discovery of several Earth-like exoplanets, the hope of detecting potential biosignatures is multiplying amongst researchers in the astrobiology community. However, to be able to discern these signatures as being truly of biological origin, we also need to consider their probable abiotic origin. The field of prebiotic chemistry, which is aimed at understanding enzyme-free chemical syntheses of biologically relevant molecules, could particularly aid in this regard. Specifically, certain peculiar characteristics of prebiotically pertinent messy chemical reactions, including diverse and racemic product yields and lower synthesis efficiencies, can be utilized in analyzing whether a perceived 'signature of life' could possibly have chemical origins. The knowledge gathered from understanding the transition from chemistry to biology during the origin of life could be used for creating a library of abiotically synthesized biologically relevant organic molecules. This can then be employed in designing, standardizing, and testing mission-specific instruments/analysis systems, while also enabling the effective targeting of exoplanets with potentially 'ongoing' molecular evolutionary processes for robust detection of life in future explorative endeavors.

17.
FEBS Lett ; 597(24): 3125-3134, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38058189

RESUMO

Nonenzymatic template-directed replication would have been affected by co-solutes in a heterogeneous prebiotic soup due to lack of enzymatic machinery. Unlike in contemporary biology, these reactions use chemically activated nucleotides, which undergo rapid hydrolysis forming nucleoside monophosphates ('spent' monomers). These co-solutes cannot extend the primer but continue to base pair with the template, thereby interfering with replication. We, therefore, aimed to understand how a mixture of 'spent' ribonucleotides would affect nonenzymatic replication. We observed the inhibition of replication in the mixture, wherein the predominant contribution came from the cognate Watson-Crick monomer, showing potential sequence dependence. Our study highlights how nonenzymatic RNA replication would have been directly affected by co-solutes, with ramifications for the emergence of functional polymers in an RNA World.


Assuntos
Nucleotídeos , Replicação do RNA , RNA/genética , Ribonucleotídeos
18.
ACS Omega ; 8(6): 5197-5208, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816708

RESUMO

Proteinaceous catalysts found in extant biology are products of life that were potentially derived through prolonged periods of evolution. Given their complexity, it is reasonable to assume that they were not accessible to prebiotic chemistry as such. Nevertheless, the dependence of many enzymes on metal ions or metal-ligand cores suggests that catalysis relevant to biology could also be possible with just the metal centers. Given their availability on the Hadean/Archean Earth, it is fair to conjecture that metal ions could have constituted the first forms of catalysts. A slow increase of complexity that was facilitated through the provision of organic ligands and amino acids/peptides possibly allowed for further evolution and diversification, eventually demarcating them into specific functions. Herein, we summarize some key experimental developments and observations that support the possible roles of metal catalysts in shaping the origins of life. Further, we also discuss how they could have evolved into modern-day enzymes, with some suggestions for what could be the imminent next steps that researchers can pursue, to delineate the putative sequence of catalyst evolution during the early stages of life.

19.
Commun Chem ; 5(1): 147, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36697941

RESUMO

Protoamphiphiles are prebiotically-plausible moieties that would have constituted protocell membranes on early Earth. Although prebiotic soup would have contained a diverse set of amphiphiles capable of generating protocell membranes, earlier studies were mainly limited to fatty acid-based systems. Herein, we characterize N-acyl amino acids (NAAs) as a model protoamphiphilic system. To the best of our knowledge, we report a new abiotic route in this study for their synthesis under wet-dry cycles from amino acids and monoglycerides via an ester-amide exchange process. We also demonstrate how N-oleoyl glycine (NOG, a representative NAA) results in vesicle formation over a broad pH range when blended with a monoglyceride or a fatty acid. Notably, NOG also acts as a substrate for peptide synthesis under wet-dry cycles, generating different lipopeptides. Overall, our study establishes NAAs as a promising protoamphiphilic system, and highlights their significance in generating robust and functional protocell membranes on primitive Earth.

20.
Chem Sci ; 12(8): 2970-2978, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34164065

RESUMO

Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis, under prebiotically plausible conditions, remains relatively unexplored. Here we discern the effect of a phospholipid on peptide synthesis using a non-activated amino acid, under wet-dry cycles. We report two competing processes simultaneously forming peptides and N-acyl amino acids (NAAs) in a single-pot reaction from a common set of reactants. NAA synthesis occurs via an ester-amide exchange, which is the first demonstration of this phenomenon in a lipid-amino acid system. Furthermore, NAAs self-assemble into vesicles at acidic pH, signifying their ability to form protocellular membranes under acidic geothermal conditions. Our work highlights the importance of exploring the co-evolutionary interactions between membrane assembly and peptide synthesis, having implications for the emergence of hitherto uncharacterized compounds of unknown prebiotic relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA