Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histopathology ; 84(5): 847-862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233108

RESUMO

AIMS: To conduct a definitive multicentre comparison of digital pathology (DP) with light microscopy (LM) for reporting histopathology slides including breast and bowel cancer screening samples. METHODS: A total of 2024 cases (608 breast, 607 GI, 609 skin, 200 renal) were studied, including 207 breast and 250 bowel cancer screening samples. Cases were examined by four pathologists (16 study pathologists across the four speciality groups), using both LM and DP, with the order randomly assigned and 6 weeks between viewings. Reports were compared for clinical management concordance (CMC), meaning identical diagnoses plus differences which do not affect patient management. Percentage CMCs were computed using logistic regression models with crossed random-effects terms for case and pathologist. The obtained percentage CMCs were referenced to 98.3% calculated from previous studies. RESULTS: For all cases LM versus DP comparisons showed the CMC rates were 99.95% [95% confidence interval (CI) = 99.90-99.97] and 98.96 (95% CI = 98.42-99.32) for cancer screening samples. In speciality groups CMC for LM versus DP showed: breast 99.40% (99.06-99.62) overall and 96.27% (94.63-97.43) for cancer screening samples; [gastrointestinal (GI) = 99.96% (99.89-99.99)] overall and 99.93% (99.68-99.98) for bowel cancer screening samples; skin 99.99% (99.92-100.0); renal 99.99% (99.57-100.0). Analysis of clinically significant differences revealed discrepancies in areas where interobserver variability is known to be high, in reads performed with both modalities and without apparent trends to either. CONCLUSIONS: Comparing LM and DP CMC, overall rates exceed the reference 98.3%, providing compelling evidence that pathologists provide equivalent results for both routine and cancer screening samples irrespective of the modality used.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Patologia Clínica , Humanos , Detecção Precoce de Câncer , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Patologia Clínica/métodos , Feminino , Estudos Multicêntricos como Assunto
2.
J Pathol ; 260(4): 431-442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294162

RESUMO

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Lesões Pré-Cancerosas , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Biomarcadores Tumorais/análise , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos/patologia , Neoplasias de Cabeça e Pescoço/patologia
3.
J Med Syst ; 47(1): 99, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715855

RESUMO

Federated learning (FL), a relatively new area of research in medical image analysis, enables collaborative learning of a federated deep learning model without sharing the data of participating clients. In this paper, we propose FedDropoutAvg, a new federated learning approach for detection of tumor in images of colon tissue slides. The proposed method leverages the power of dropout, a commonly employed scheme to avoid overfitting in neural networks, in both client selection and federated averaging processes. We examine FedDropoutAvg against other FL benchmark algorithms for two different image classification tasks using a publicly available multi-site histopathology image dataset. We train and test the proposed model on a large dataset consisting of 1.2 million image tiles from 21 different sites. For testing the generalization of all models, we select held-out test sets from sites that were not used during training. We show that the proposed approach outperforms other FL methods and reduces the performance gap (to less than 3% in terms of AUC on independent test sites) between FL and a central deep learning model that requires all data to be shared for centralized training, demonstrating the potential of the proposed FedDropoutAvg model to be more generalizable than other state-of-the-art federated models. To the best of our knowledge, ours is the first study to effectively utilize the dropout strategy in a federated setting for tumor detection in histology images.


Assuntos
Algoritmos , Benchmarking , Humanos , Colo/diagnóstico por imagem , Conhecimento , Redes Neurais de Computação
4.
Histopathology ; 77(4): 631-645, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32618014

RESUMO

AIMS: Tumour genotype and phenotype are related and can predict outcome. In this study, we hypothesised that the visual assessment of breast cancer (BC) morphological features can provide valuable insight into underlying molecular profiles. METHODS AND RESULTS: The Cancer Genome Atlas (TCGA) BC cohort was used (n = 743) and morphological features, including Nottingham grade and its components and nucleolar prominence, were assessed utilising whole-slide images (WSIs). Two independent scores were assigned, and discordant cases were utilised to represent cases with intermediate morphological features. Differentially expressed genes (DEGs) were identified for each feature, compared among concordant/discordant cases and tested for specific pathways. Concordant grading was observed in 467 of 743 (63%) of cases. Among concordant case groups, eight common DEGs (UGT8, DDC, RGR, RLBP1, SPRR1B, CXorf49B, PSAPL1 and SPRR2G) were associated with overall tumour grade and its components. These genes are related mainly to cellular proliferation, differentiation and metabolism. The number of DEGs in cases with discordant grading was larger than those identified in concordant cases. The largest number of DEGs was observed in discordant grade 1:3 cases (n = 1185). DEGs were identified for each discordant component. Some DEGs were uniquely associated with well-defined specific morphological features, whereas expression/co-expression of other genes was identified across multiple features and underlined intermediate morphological features. CONCLUSION: Morphological features are probably related to distinct underlying molecular profiles that drive both morphology and behaviour. This study provides further evidence to support the use of image-based analysis of WSIs, including artificial intelligence algorithms, to predict tumour molecular profiles and outcome.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Citodiagnóstico/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Transcriptoma
5.
BMC Bioinformatics ; 17(1): 430, 2016 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770786

RESUMO

BACKGROUND: New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. RESULTS: We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. CONCLUSIONS: The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Adenocarcinoma/genética , Neoplasias Colorretais/genética , Humanos , Imuno-Histoquímica , Processamento de Proteína Pós-Traducional , Frações Subcelulares
6.
BMC Bioinformatics ; 17: 255, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342072

RESUMO

BACKGROUND: There have been great advancements in the field of digital pathology. The surge in development of analytical methods for such data makes it crucial to develop benchmark synthetic datasets for objectively validating and comparing these methods. In addition, developing a spatial model of the tumour microenvironment can aid our understanding of the underpinning laws of tumour heterogeneity. RESULTS: We propose a model of the healthy and cancerous colonic crypt microenvironment. Our model is designed to generate synthetic histology image data with parameters that allow control over cancer grade, cellularity, cell overlap ratio, image resolution, and objective level. CONCLUSIONS: To the best of our knowledge, ours is the first model to simulate histology image data at sub-cellular level for healthy and cancerous colon tissue, where the cells have different compartments and are organised to mimic the microenvironment of tissue in situ rather than dispersed cells in a cultured environment. Qualitative and quantitative validation has been performed on the model results demonstrating good similarity to the real data. The simulated data could be used to validate techniques such as image restoration, cell and crypt segmentation, and cancer grading.


Assuntos
Adenocarcinoma/patologia , Colo/citologia , Neoplasias do Colo/patologia , Simulação por Computador , Microambiente Tumoral , Amarelo de Eosina-(YS)/química , Hematoxilina/química , Humanos
7.
Histopathology ; 68(7): 1063-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26409165

RESUMO

AIMS: Digital pathology (DP) offers advantages over glass slide microscopy (GS), but data demonstrating a statistically valid equivalent (i.e. non-inferior) performance of DP against GS are required to permit its use in diagnosis. The aim of this study is to provide evidence of non-inferiority. METHODS AND RESULTS: Seventeen pathologists re-reported 3017 cases by DP. Of these, 1009 were re-reported by the same pathologist, and 2008 by a different pathologist. Re-examination of 10 138 scanned slides (2.22 terabytes) produced 72 variances between GS and DP reports, including 21 clinically significant variances. Ground truth lay with GS in 12 cases and with DP in nine cases. These results are within the 95% confidence interval for existing intraobserver and interobserver variability, proving that DP is non-inferior to GS. In three cases, the digital platform was deemed to be responsible for the variance, including a gastric biopsy, where Helicobacter pylori only became visible on slides scanned at the ×60 setting, and a bronchial biopsy and penile biopsy, where dysplasia was reported on DP but was not present on GS. CONCLUSIONS: This is one of the largest studies proving that DP is equivalent to GS for the diagnosis of histopathology specimens. Error rates are similar in both platforms, although some problems e.g. detection of bacteria, are predictable.


Assuntos
Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Patologia Clínica/métodos , Biópsia , Intervalos de Confiança , Humanos , Microscopia , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estudos Retrospectivos
8.
Bioinformatics ; 30(3): 420-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24273247

RESUMO

MOTIVATION: New bioimaging techniques have recently been proposed to visualize the colocation or interaction of several proteins within individual cells, displaying the heterogeneity of neighbouring cells within the same tissue specimen. Such techniques could hold the key to understanding complex biological systems such as the protein interactions involved in cancer. However, there is a need for new algorithmic approaches that analyze the large amounts of multi-tag bioimage data from cancerous and normal tissue specimens to begin to infer protein networks and unravel the cellular heterogeneity at a molecular level. RESULTS: The proposed approach analyzes cell phenotypes in normal and cancerous colon tissue imaged using the robotically controlled Toponome Imaging System microscope. It involves segmenting the 4',6-diamidino-2-phenylindole-labelled image into cells and determining the cell phenotypes according to their protein-protein dependence profile. These were analyzed using two new measures, Difference in Sums of Weighted cO-dependence/Anti-co-dependence profiles (DiSWOP and DiSWAP) for overall co-expression and anti-co-expression, respectively. These novel quantities were extracted using 11 Toponome Imaging System image stacks from either cancerous or normal human colorectal specimens. This approach enables one to easily identify protein pairs that have significantly higher/lower co-expression levels in cancerous tissue samples when compared with normal colon tissue. AVAILABILITY AND IMPLEMENTATION: http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/diswop.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Algoritmos , Neoplasias do Colo/metabolismo , Humanos , Fenótipo
9.
Med Image Anal ; 91: 102997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866169

RESUMO

Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain. In this paper, we present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge by exploiting a large amount of unlabelled data for model training thus alleviating the need for a large annotated dataset. However, SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data. We propose an SSL method that learns robust features from both labelled and unlabelled images by enforcing consistency against varying contexts and feature perturbations. The proposed method incorporates context-aware consistency by contrasting pairs of overlapping images in a pixel-wise manner from changing contexts resulting in robust and context invariant features. We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence. Finally, entropy minimisation is employed to further boost the confidence of the final prediction maps from unlabelled data. We conduct an extensive set of experiments on two publicly available large datasets (BCSS and MoNuSeg) and show superior performance compared to the state-of-the-art methods.


Assuntos
Núcleo Celular , Semântica , Humanos , Entropia , Técnicas Histológicas , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
10.
NPJ Precis Oncol ; 8(1): 137, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942998

RESUMO

Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.

11.
Med Image Anal ; 92: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157647

RESUMO

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Núcleo Celular/patologia , Técnicas Histológicas/métodos
12.
JAMA Netw Open ; 5(1): e2144022, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35040966

RESUMO

Importance: Visual screening for oral cancer has been found to be useful in a large randomized clinical trial in Kerala, India, showing substantial reduction in mortality. To address the shortage of medical personnel in resource-deficient regions, using the services of community health workers has been proposed as a strategy to fill the gap in human resources in health care. Objective: To assess the feasibility of community health workers in screening and early detection of oral cancer using a mobile application capturing system. Design, Setting, and Participants: A cross-sectional study using a household sample was conducted in 10 areas of Gautam Budhnagar district, Uttar Pradesh, India, from January 31, 2020, to March 31, 2021, to assess the feasibility of identification of oral lesions by community health workers using a mobile phone application compared with diagnosis by trained dentists in a screening clinic. Men and women aged 30 years or older as well as tobacco users younger than 30 years were eligible for screening. Interventions: Screening by trained community health workers vs dentists. Results: A total of 1200 participants were screened by the community health workers during their home visits; of these, 1018 participants (526 [51.7%] men; mean [SD] age, 35 [16] years) were also referred and screened by the dentists a clinic. There was near-perfect agreement (κ = 0.9) between the findings of the community health workers and the dentists in identifying the positive or negative cases with overall sensitivity of 96.69% (95% CI, 94.15%-98.33%) and specificity of identification of 98.69% (95% CI, 97.52%-99.40%). Conclusions and Relevance: In this cross-sectional study, trained community health workers were able after initial supervision by qualified dentists to perform oral cancer screening programs. These findings suggest that community health workers can perform this screening in resource-constrained settings.


Assuntos
Serviços de Saúde Comunitária/métodos , Agentes Comunitários de Saúde/educação , Detecção Precoce de Câncer/métodos , Neoplasias Bucais/diagnóstico , Adulto , Estudos Transversais , Estudos de Viabilidade , Feminino , Humanos , Índia , Masculino , Aplicativos Móveis , Avaliação de Programas e Projetos de Saúde , Sensibilidade e Especificidade
13.
Commun Med (Lond) ; 2: 120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168445

RESUMO

Background: Computational pathology has seen rapid growth in recent years, driven by advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel whole-slide images, to the best of our knowledge, there is no open-source software library providing a generic end-to-end API for pathology image analysis using best practices. Most researchers have designed custom pipelines from the bottom up, restricting the development of advanced algorithms to specialist users. To help overcome this bottleneck, we present TIAToolbox, a Python toolbox designed to make computational pathology accessible to computational, biomedical, and clinical researchers. Methods: By creating modular and configurable components, we enable the implementation of computational pathology algorithms in a way that is easy to use, flexible and extensible. We consider common sub-tasks including reading whole slide image data, patch extraction, stain normalization and augmentation, model inference, and visualization. For each of these steps, we provide a user-friendly application programming interface for commonly used methods and models. Results: We demonstrate the use of the interface to construct a full computational pathology deep-learning pipeline. We show, with the help of examples, how state-of-the-art deep-learning algorithms can be reimplemented in a streamlined manner using our library with minimal effort. Conclusions: We provide a usable and adaptable library with efficient, cutting-edge, and unit-tested tools for data loading, pre-processing, model inference, post-processing, and visualization. This enables a range of users to easily build upon recent deep-learning developments in the computational pathology literature.

14.
BMC Bioinformatics ; 12: 297, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21777450

RESUMO

BACKGROUND: Innovations in biological and biomedical imaging produce complex high-content and multivariate image data. For decision-making and generation of hypotheses, scientists need novel information technology tools that enable them to visually explore and analyze the data and to discuss and communicate results or findings with collaborating experts from various places. RESULTS: In this paper, we present a novel Web2.0 approach, BioIMAX, for the collaborative exploration and analysis of multivariate image data by combining the webs collaboration and distribution architecture with the interface interactivity and computation power of desktop applications, recently called rich internet application. CONCLUSIONS: BioIMAX allows scientists to discuss and share data or results with collaborating experts and to visualize, annotate, and explore multivariate image data within one web-based platform from any location via a standard web browser requiring only a username and a password. BioIMAX can be accessed at http://ani.cebitec.uni-bielefeld.de/BioIMAX with the username "test" and the password "test1" for testing purposes.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Instrução por Computador , Comportamento Cooperativo , Diagnóstico por Imagem , Internet
15.
J Clin Pathol ; 74(7): 448-455, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32934103

RESUMO

BACKGROUND: Digital pathology (DP) has the potential to fundamentally change the way that histopathology is practised, by streamlining the workflow, increasing efficiency, improving diagnostic accuracy and facilitating the platform for implementation of artificial intelligence-based computer-assisted diagnostics. Although the barriers to wider adoption of DP have been multifactorial, limited evidence of reliability has been a significant contributor. A meta-analysis to demonstrate the combined accuracy and reliability of DP is still lacking in the literature. OBJECTIVES: We aimed to review the published literature on the diagnostic use of DP and to synthesise a statistically pooled evidence on safety and reliability of DP for routine diagnosis (primary and secondary) in the context of validation process. METHODS: A comprehensive literature search was conducted through PubMed, Medline, EMBASE, Cochrane Library and Google Scholar for studies published between 2013 and August 2019. The search protocol identified all studies comparing DP with light microscopy (LM) reporting for diagnostic purposes, predominantly including H&E-stained slides. Random-effects meta-analysis was used to pool evidence from the studies. RESULTS: Twenty-five studies were deemed eligible to be included in the review which examined a total of 10 410 histology samples (average sample size 176). For overall concordance (clinical concordance), the agreement percentage was 98.3% (95% CI 97.4 to 98.9) across 24 studies. A total of 546 major discordances were reported across 25 studies. Over half (57%) of these were related to assessment of nuclear atypia, grading of dysplasia and malignancy. These were followed by challenging diagnoses (26%) and identification of small objects (16%). CONCLUSION: The results of this meta-analysis indicate equivalent performance of DP in comparison with LM for routine diagnosis. Furthermore, the results provide valuable information concerning the areas of diagnostic discrepancy which may warrant particular attention in the transition to DP.


Assuntos
Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Patologia Clínica/métodos , Inteligência Artificial , Humanos , Microscopia/métodos
16.
Lancet Digit Health ; 3(12): e763-e772, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34686474

RESUMO

BACKGROUND: Determining the status of molecular pathways and key mutations in colorectal cancer is crucial for optimal therapeutic decision making. We therefore aimed to develop a novel deep learning pipeline to predict the status of key molecular pathways and mutations from whole-slide images of haematoxylin and eosin-stained colorectal cancer slides as an alternative to current tests. METHODS: In this retrospective study, we used 502 diagnostic slides of primary colorectal tumours from 499 patients in The Cancer Genome Atlas colon and rectal cancer (TCGA-CRC-DX) cohort and developed a weakly supervised deep learning framework involving three separate convolutional neural network models. Whole-slide images were divided into equally sized tiles and model 1 (ResNet18) extracted tumour tiles from non-tumour tiles. These tumour tiles were inputted into model 2 (adapted ResNet34), trained by iterative draw and rank sampling to calculate a prediction score for each tile that represented the likelihood of a tile belonging to the molecular labels of high mutation density (vs low mutation density), microsatellite instability (vs microsatellite stability), chromosomal instability (vs genomic stability), CpG island methylator phenotype (CIMP)-high (vs CIMP-low), BRAFmut (vs BRAFWT), TP53mut (vs TP53WT), and KRASWT (vs KRASmut). These scores were used to identify the top-ranked titles from each slide, and model 3 (HoVer-Net) segmented and classified the different types of cell nuclei in these tiles. We calculated the area under the convex hull of the receiver operating characteristic curve (AUROC) as a model performance measure and compared our results with those of previously published methods. FINDINGS: Our iterative draw and rank sampling method yielded mean AUROCs for the prediction of hypermutation (0·81 [SD 0·03] vs 0·71), microsatellite instability (0·86 [0·04] vs 0·74), chromosomal instability (0·83 [0·02] vs 0·73), BRAFmut (0·79 [0·01] vs 0·66), and TP53mut (0·73 [0·02] vs 0·64) in the TCGA-CRC-DX cohort that were higher than those from previously published methods, and an AUROC for KRASmut that was similar to previously reported methods (0·60 [SD 0·04] vs 0·60). Mean AUROC for predicting CIMP-high status was 0·79 (SD 0·05). We found high proportions of tumour-infiltrating lymphocytes and necrotic tumour cells to be associated with microsatellite instability, and high proportions of tumour-infiltrating lymphocytes and a low proportion of necrotic tumour cells to be associated with hypermutation. INTERPRETATION: After large-scale validation, our proposed algorithm for predicting clinically important mutations and molecular pathways, such as microsatellite instability, in colorectal cancer could be used to stratify patients for targeted therapies with potentially lower costs and quicker turnaround times than sequencing-based or immunohistochemistry-based approaches. FUNDING: The UK Medical Research Council.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Técnicas Histológicas/métodos , Instabilidade de Microssatélites , Mutação , Fenótipo , Área Sob a Curva , Biomarcadores Tumorais/metabolismo , Colo/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Curva ROC , Reto/patologia , Estudos Retrospectivos
17.
IEEE Trans Med Imaging ; 39(7): 2395-2405, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012004

RESUMO

Digital histology images are amenable to the application of convolutional neural networks (CNNs) for analysis due to the sheer size of pixel data present in them. CNNs are generally used for representation learning from small image patches (e.g. 224×224 ) extracted from digital histology images due to computational and memory constraints. However, this approach does not incorporate high-resolution contextual information in histology images. We propose a novel way to incorporate a larger context by a context-aware neural network based on images with a dimension of 1792×1792 pixels. The proposed framework first encodes the local representation of a histology image into high dimensional features then aggregates the features by considering their spatial organization to make a final prediction. We evaluated the proposed method on two colorectal cancer datasets for the task of cancer grading. Our method outperformed the traditional patch-based approaches, problem-specific methods, and existing context-based methods. We also presented a comprehensive analysis of different variants of the proposed method.


Assuntos
Neoplasias Colorretais , Redes Neurais de Computação , Neoplasias Colorretais/diagnóstico por imagem , Técnicas Histológicas , Humanos
18.
IEEE Trans Med Imaging ; 38(11): 2620-2631, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30908205

RESUMO

Estimating over-amplification of human epidermal growth factor receptor 2 (HER2) on invasive breast cancer is regarded as a significant predictive and prognostic marker. We propose a novel deep reinforcement learning (DRL)-based model that treats immunohistochemical (IHC) scoring of HER2 as a sequential learning task. For a given image tile sampled from multi-resolution giga-pixel whole slide image (WSI), the model learns to sequentially identify some of the diagnostically relevant regions of interest (ROIs) by following a parameterized policy. The selected ROIs are processed by recurrent and residual convolution networks to learn the discriminative features for different HER2 scores and predict the next location, without requiring to process all the sub-image patches of a given tile for predicting the HER2 score, mimicking the histopathologist who would not usually analyze every part of the slide at the highest magnification. The proposed model incorporates a task-specific regularization term and inhibition of return mechanism to prevent the model from revisiting the previously attended locations. We evaluated our model on two IHC datasets: a publicly available dataset from the HER2 scoring challenge contest and another dataset consisting of WSIs of gastroenteropancreatic neuroendocrine tumor sections stained with Glo1 marker. We demonstrate that the proposed model outperforms other methods based on state-of-the-art deep convolutional networks. To the best of our knowledge, this is the first study using DRL for IHC scoring and could potentially lead to wider use of DRL in the domain of computational pathology reducing the computational burden of the analysis of large multi-gigapixel histology images.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Algoritmos , Biomarcadores Tumorais/análise , Mama/química , Mama/diagnóstico por imagem , Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Receptor ErbB-2/análise
19.
IEEE J Biomed Health Inform ; 23(4): 1469-1476, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30387756

RESUMO

Recently, deep learning frameworks have been shown to be successful and efficient in processing digital histology images for various detection and classification tasks. Among these tasks, cell detection and classification are key steps in many computer-assisted diagnosis systems. Traditionally, cell detection and classification is performed as a sequence of two consecutive steps by using two separate deep learning networks: one for detection and the other for classification. This strategy inevitably increases the computational complexity of the training stage. In this paper, we propose a synchronized deep autoencoder network for simultaneous detection and classification of cells in bone marrow histology images. The proposed network uses a single architecture to detect the positions of cells and classify the detected cells, in parallel. It uses a curve-support Gaussian model to compute probability maps that allow detecting irregularly shape cells precisely. Moreover, the network includes a novel neighborhood selection mechanism to boost the classification accuracy. We show that the performance of the proposed network is superior than traditional deep learning detection methods and very competitive compared to traditional deep learning classification networks. Runtime comparison also shows that our network requires less time to be trained.


Assuntos
Células da Medula Óssea , Aprendizado Profundo , Técnicas de Preparação Histocitológica/métodos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Biópsia , Medula Óssea/patologia , Células da Medula Óssea/classificação , Células da Medula Óssea/citologia , Células da Medula Óssea/patologia , Humanos
20.
Med Image Anal ; 52: 160-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580111

RESUMO

Object segmentation and structure localization are important steps in automated image analysis pipelines for microscopy images. We present a convolution neural network (CNN) based deep learning architecture for segmentation of objects in microscopy images. The proposed network can be used to segment cells, nuclei and glands in fluorescence microscopy and histology images after slight tuning of input parameters. The network trains at multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The extra convolutional layers which bypass the max-pooling operation allow the network to train for variable input intensities and object size and make it robust to noisy data. We compare our results on publicly available data sets and show that the proposed network outperforms recent deep learning algorithms.


Assuntos
Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Redes Neurais de Computação , Algoritmos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA