Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 173-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501940

RESUMO

PURPOSE: To develop an iterative concomitant field and motion corrected (iCoMoCo) reconstruction for isotropic high-resolution UTE pulmonary imaging at 0.55 T. METHODS: A free-breathing golden-angle stack-of-spirals UTE sequence was used to acquire data for 8 min with prototype and commercial 0.55 T MRI scanners. The data was binned into 12 respiratory phases based on superior-inferior navigator readouts. The previously published iterative motion corrected (iMoCo) reconstruction was extended to include concomitant field correction directly in the cost function. The reconstruction was implemented within the Gadgetron framework for inline reconstruction. Data were retrospectively reconstructed to simulate scan times of 2, 4, 6, and 8 min. Image quality was assessed using apparent SNR and image sharpness. The technique was evaluated in healthy volunteers and patients with known lung pathology including coronavirus disease 2019 infection, chronic granulomatous disease, lymphangioleiomyomatosis, and lung nodules. RESULTS: The technique provided diagnostic-quality images, and image quality was maintained with a slight loss in SNR for simulated scan times down to 4 min. Parenchymal apparent SNR was 4.33 ± 0.57, 5.96 ± 0.65, 7.36 ± 0.64, and 7.87 ± 0.65 using iCoMoCo with scan times of 2, 4, 6, and 8 min, respectively. Image sharpness at the diaphragm was comparable between iCoMoCo and reference images. Concomitant field corrections visibly improved the sharpness of anatomical structures away from the isocenter. Inline image reconstruction and artifact correction were achieved in <5 min. CONCLUSION: The proposed iCoMoCo pulmonary imaging technique can generate diagnostic quality images with 1.75 mm isotropic resolution in less than 5 min using a 6-min acquisition, on a 0.55 T scanner.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Razão Sinal-Ruído , Algoritmos , Artefatos , COVID-19/diagnóstico por imagem , Masculino , Respiração , Estudos Retrospectivos , Feminino , SARS-CoV-2 , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Pneumopatias/diagnóstico por imagem , Imagens de Fantasmas , Neoplasias Pulmonares/diagnóstico por imagem
2.
Magn Reson Med ; 92(2): 751-760, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469944

RESUMO

PURPOSE: To develop an inline automatic quality control to achieve consistent diagnostic image quality with subject-specific scan time, and to demonstrate this method for 2D phase-contrast flow MRI to reach a predetermined SNR. METHODS: We designed a closed-loop feedback framework between image reconstruction and data acquisition to intermittently check SNR (every 20 s) and automatically stop the acquisition when a target SNR is achieved. A free-breathing 2D pseudo-golden-angle spiral phase-contrast sequence was modified to listen for image-quality messages from the reconstructions. Ten healthy volunteers and 1 patient were imaged at 0.55 T. Target SNR was selected based on retrospective analysis of cardiac output error, and performance of the automatic SNR-driven "stop" was assessed inline. RESULTS: SNR calculation and automated segmentation was feasible within 20 s with inline deployment. The SNR-driven acquisition time was 2 min 39 s ± 67 s (aorta) and 3 min ± 80 s (main pulmonary artery) with a min/max acquisition time of 1 min 43 s/4 min 52 s (aorta) and 1 min 43 s/5 min 50 s (main pulmonary artery) across 6 healthy volunteers, while ensuring a diagnostic measurement with relative absolute error in quantitative flow measurement lower than 2.1% (aorta) and 6.3% (main pulmonary artery). CONCLUSION: The inline quality control enables subject-specific optimized scan times while ensuring consistent diagnostic image quality. The distribution of automated stopping times across the population revealed the value of a subject-specific scan time.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Controle de Qualidade , Razão Sinal-Ruído , Humanos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Imageamento por Ressonância Magnética/métodos , Masculino , Voluntários Saudáveis , Algoritmos , Feminino , Artéria Pulmonar/diagnóstico por imagem , Aorta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Respiração , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 92(1): 346-360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38394163

RESUMO

PURPOSE: To introduce alternating current-controlled, conductive ink-printed marker that could be implemented with both custom and commercial interventional devices for device tracking under MRI using gradient echo, balanced SSFP, and turbo spin-echo sequences. METHODS: Tracking markers were designed as solenoid coils and printed on heat shrink tubes using conductive ink. These markers were then placed on three MR-compatible test samples that are typically challenging to visualize during MRI scans. MRI visibility of markers was tested by applying alternating and direct current to the markers, and the effects of applied current parameters (amplitude, frequency) on marker artifacts were tested for three sequences (gradient echo, turbo spin echo, and balanced SSFP) in a gel phantom, using 0.55T and 1.5T MRI scanners. Furthermore, an MR-compatible current supply circuit was designed, and the performance of the current-controlled markers was tested in one postmortem animal experiment using the current supply circuit. RESULTS: Direction and parameters of the applied current were determined to provide the highest conspicuity for all three sequences. Marker artifact size was controlled by adjusting the current amplitude, successfully. Visibility of a custom-designed, 20-gauge nitinol needle was increased in both in vitro and postmortem animal experiments using the current supply circuit. CONCLUSION: Current-controlled conductive ink-printed markers can be placed on custom or commercial MR-compatible interventional tools and can provide an easy and effective solution to device tracking under MRI for three sequences by adjusting the applied current parameters with respect to pulse sequence parameters using the current supply circuit.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Animais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Artefatos , Imagem por Ressonância Magnética Intervencionista/instrumentação
4.
J Magn Reson Imaging ; 59(2): 412-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37530545

RESUMO

Cardiac MR imaging is well established for assessment of cardiovascular structure and function, myocardial scar, quantitative flow, parametric mapping, and myocardial perfusion. Despite the clear evidence supporting the use of cardiac MRI for a wide range of indications, it is underutilized clinically. Recent developments in low-field MRI technology, including modern data acquisition and image reconstruction methods, are enabling high-quality low-field imaging that may improve the cost-benefit ratio for cardiac MRI. Studies to-date confirm that low-field MRI offers high measurement concordance and consistent interpretation with clinical imaging for several routine sequences. Moreover, low-field MRI may enable specific new clinical opportunities for cardiac imaging such as imaging near metal implants, MRI-guided interventions, combined cardiopulmonary assessment, and imaging of patients with severe obesity. In this review, we discuss the recent progress in low-field cardiac MRI with a focus on technical developments and early clinical validation studies. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Miocárdio , Radiografia , Processamento de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 90(2): 552-568, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036033

RESUMO

PURPOSE: To develop 2D turbo spin-echo (TSE) imaging using annular spiral rings (abbreviated "SPRING-RIO TSE") with compensation of concomitant gradient fields and B0 inhomogeneity at both 0.55T and 1.5T for fast T2 -weighted imaging. METHODS: Strategies of gradient waveform modifications were implemented in SPRING-RIO TSE for compensation of self-squared concomitant gradient terms at the TE and across echo spacings, along with reconstruction-based corrections to simultaneously compensate for the residual concomitant gradient and B0 field induced phase accruals along the readout. The signal pathway disturbance caused by time-varying and spatially dependent concomitant fields was simulated, and echo-to-echo phase variations before and after sequence-based compensation were compared. Images from SPRING-RIO TSE with no compensation, with compensation, and Cartesian TSE were also compared via phantom and in vivo acquisitions. RESULTS: Simulation showed how concomitant fields affected the signal evolution with no compensation, and both simulation and phantom studies demonstrated the performance of the proposed sequence modifications, as well as the readout off-resonance corrections. Volunteer data showed that after full correction, the SPRING-RIO TSE sequence achieved high image quality with improved SNR efficiency (15%-20% increase), and reduced RF SAR (˜50% reduction), compared to the standard Cartesian TSE, presenting potential benefits, especially in regaining SNR at low-field (0.55T). CONCLUSION: Implementation of SPRING-RIO TSE with concomitant field compensation was tested at 0.55T and 1.5T. The compensation principles can be extended to correct for other trajectory types that are time-varying along the echo train and temporally asymmetric in TSE-based imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Imagens de Fantasmas , Fenômenos Magnéticos
6.
Magn Reson Med ; 89(2): 845-858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198118

RESUMO

PURPOSE: We describe a clinical grade, "active", monopole antenna-based metallic guidewire that has a continuous shaft-to-tip image profile, a pre-shaped tip-curve, standard 0.89 mm (0.035″) outer diameter, and a detachable connector for catheter exchange during cardiovascular catheterization at 0.55T. METHODS: Electromagnetic simulations were performed to characterize the magnetic field around the antenna whip for continuous tip visibility. The active guidewire was manufactured using medical grade materials in an ISO Class 7 cleanroom. RF-induced heating of the active guidewire prototype was tested in one gel phantom per ASTM 2182-19a, alone and in tandem with clinical metal-braided catheters. Real-time MRI visibility was tested in one gel phantom and in-vivo in two swine. Mechanical performance was compared with commercial equivalents. RESULTS: The active guidewire provided continuous "profile" shaft and tip visibility in-vitro and in-vivo, analogous to guidewire shaft-and-tip profiles under X-ray. The MRI signal signature matched simulation results. Maximum unscaled RF-induced temperature rise was 5.2°C and 6.5°C (3.47 W/kg local background specific absorption rate), alone and in tandem with a steel-braided catheter, respectively. Mechanical characteristics matched commercial comparator guidewires. CONCLUSION: The active guidewire was clearly visible via real-time MRI at 0.55T and exhibits a favorable geometric sensitivity profile depicting the guidewire continuously from shaft-to-tip including a unique curved-tip signature. RF-induced heating is clinically acceptable. This design allows safe device navigation through luminal structures and heart chambers. The detachable connector allows delivery and exchange of cardiovascular catheters while maintaining guidewire position. This enhanced guidewire design affords the expected performance of X-ray guidewires during human MRI catheterization.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Suínos , Humanos , Animais , Cateterismo Cardíaco/métodos , Desenho de Equipamento , Cateteres Cardíacos , Imagens de Fantasmas
7.
Magn Reson Med ; 90(4): 1396-1413, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288601

RESUMO

PURPOSE: Exercise-induced dyspnea caused by lung water is an early heart failure symptom. Dynamic lung water quantification during exercise is therefore of interest to detect early stage disease. This study developed a time-resolved 3D MRI method to quantify transient lung water dynamics during rest and exercise stress. METHODS: The method was evaluated in 15 healthy subjects and 2 patients with heart failure imaged in transitions between rest and exercise, and in a porcine model of dynamic extravascular lung water accumulation through mitral regurgitation (n = 5). Time-resolved images were acquired at 0.55T using a continuous 3D stack-of-spirals proton density weighted sequence with 3.5 mm isotropic resolution, and derived using a motion corrected sliding-window reconstruction with 90-s temporal resolution in 20-s increments. A supine MRI-compatible pedal ergometer was used for exercise. Global and regional lung water density (LWD) and percent change in LWD (ΔLWD) were automatically quantified. RESULTS: A ΔLWD increase of 3.3 ± 1.5% was achieved in the animals. Healthy subjects developed a ΔLWD of 7.8 ± 5.0% during moderate exercise, peaked at 16 ± 6.8% during vigorous exercise, and remained unchanged over 10 min at rest (-1.4 ± 3.5%, p = 0.18). Regional LWD were higher posteriorly compared the anterior lungs (rest: 33 ± 3.7% vs 20 ± 3.1%, p < 0.0001; peak exercise: 36 ± 5.5% vs 25 ± 4.6%, p < 0.0001). Accumulation rates were slower in patients than healthy subjects (2.0 ± 0.1%/min vs 2.6 ± 0.9%/min, respectively), whereas LWD were similar at rest (28 ± 10% and 28 ± 2.9%) and peak exercise (ΔLWD 17 ± 10% vs 16 ± 6.8%). CONCLUSION: Lung water dynamics can be quantified during exercise using continuous 3D MRI and a sliding-window image reconstruction.


Assuntos
Insuficiência Cardíaca , Imageamento por Ressonância Magnética , Animais , Suínos , Pulmão/diagnóstico por imagem , Teste de Esforço
8.
J Cardiovasc Magn Reson ; 25(1): 48, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574552

RESUMO

Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.


Assuntos
Cateterismo Cardíaco , Imagem por Ressonância Magnética Intervencionista , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
9.
J Cardiovasc Magn Reson ; 25(1): 1, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642713

RESUMO

BACKGROUND: Left ventricular (LV) contractility and compliance are derived from pressure-volume (PV) loops during dynamic preload reduction, but reliable simultaneous measurements of pressure and volume are challenging with current technologies. We have developed a method to quantify contractility and compliance from PV loops during a dynamic preload reduction using simultaneous measurements of volume from real-time cardiovascular magnetic resonance (CMR) and invasive LV pressures with CMR-specific signal conditioning. METHODS: Dynamic PV loops were derived in 16 swine (n = 7 naïve, n = 6 with aortic banding to increase afterload, n = 3 with ischemic cardiomyopathy) while occluding the inferior vena cava (IVC). Occlusion was performed simultaneously with the acquisition of dynamic LV volume from long-axis real-time CMR at 0.55 T, and recordings of invasive LV and aortic pressures, electrocardiogram, and CMR gradient waveforms. PV loops were derived by synchronizing pressure and volume measurements. Linear regression of end-systolic- and end-diastolic- pressure-volume relationships enabled calculation of contractility. PV loops measurements in the CMR environment were compared to conductance PV loop catheter measurements in 5 animals. Long-axis 2D LV volumes were validated with short-axis-stack images. RESULTS: Simultaneous PV acquisition during IVC-occlusion was feasible. The cardiomyopathy model measured lower contractility (0.2 ± 0.1 mmHg/ml vs 0.6 ± 0.2 mmHg/ml) and increased compliance (12.0 ± 2.1 ml/mmHg vs 4.9 ± 1.1 ml/mmHg) compared to naïve animals. The pressure gradient across the aortic band was not clinically significant (10 ± 6 mmHg). Correspondingly, no differences were found between the naïve and banded pigs. Long-axis and short-axis LV volumes agreed well (difference 8.2 ± 14.5 ml at end-diastole, -2.8 ± 6.5 ml at end-systole). Agreement in contractility and compliance derived from conductance PV loop catheters and in the CMR environment was modest (intraclass correlation coefficient 0.56 and 0.44, respectively). CONCLUSIONS: Dynamic PV loops during a real-time CMR-guided preload reduction can be used to derive quantitative metrics of contractility and compliance, and provided more reliable volumetric measurements than conductance PV loop catheters.


Assuntos
Cateterismo Cardíaco , Isquemia Miocárdica , Suínos , Animais , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Função Ventricular Esquerda , Volume Sistólico
10.
MAGMA ; 36(3): 465-475, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306784

RESUMO

OBJECTIVE: Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T. MATERIALS AND METHODS: A spiral in-out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T. RESULTS: Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition. DISCUSSION: We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.


Assuntos
Encéfalo , Aumento da Imagem , Humanos , Aumento da Imagem/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Razão Sinal-Ruído , Artefatos
11.
Magn Reson Med ; 88(2): 691-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445768

RESUMO

PURPOSE: To develop and evaluate an improved strategy for compensating concomitant field effects in non-Cartesian MRI at the time of image reconstruction. THEORY: We present a higher-order reconstruction method, denoted as MaxGIRF, for non-Cartesian imaging that simultaneously corrects off-resonance, concomitant fields, and trajectory errors without requiring specialized hardware. Gradient impulse response functions are used to predict actual gradient waveforms, which are in turn used to estimate the spatiotemporally varying concomitant fields based on analytic expressions. The result, in combination with a reference field map, is an encoding matrix that incorporates a correction for all three effects. METHODS: The MaxGIRF reconstruction is applied to noiseless phantom simulations, spiral gradient-echo imaging of an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom, and axial and sagittal multislice spiral spin-echo imaging of a healthy volunteer at 0.55 T. The MaxGIRF reconstruction was compared against previously established concomitant field-compensation and image-correction methods. Reconstructed images are evaluated qualitatively and quantitatively using normalized RMS error. Finally, a low-rank approximation of MaxGIRF is used to reduce computational burden. The accuracy of the low-rank approximation is studied as a function of minimum rank. RESULTS: The MaxGIRF reconstruction successfully mitigated blurring artifacts both in phantoms and in vivo and was effective in regions where concomitant fields counteract static off-resonance, superior to the comparator method. A minimum rank of 8 and 30 for axial and sagittal scans, respectively, gave less than 2% error compared with the full-rank reconstruction. CONCLUSIONS: The MaxGIRF reconstruction simultaneously corrects off-resonance, trajectory errors, and concomitant field effects. The impact of this method is greatest when imaging with longer readouts and/or at lower field strength.


Assuntos
Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
12.
Magn Reson Med ; 87(4): 1784-1798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783391

RESUMO

PURPOSE: To develop an isotropic high-resolution stack-of-spirals UTE sequence for pulmonary imaging at 0.55 Tesla by leveraging a combination of robust respiratory-binning, trajectory correction, and concomitant-field corrections. METHODS: A stack-of-spirals golden-angle UTE sequence was used to continuously acquire data for 15.5 minutes. The data was binned to a stable respiratory phase based on superoinferior readout self-navigator signals. Corrections for trajectory errors and concomitant field artifacts, along with image reconstruction with conjugate gradient SENSE, were performed inline within the Gadgetron framework. Finally, data were retrospectively reconstructed to simulate scan times of 5, 8.5, and 12 minutes. Image quality was assessed using signal-to-noise, image sharpness, and qualitative reader scores. The technique was evaluated in healthy volunteers, patients with coronavirus disease 2019 infection, and patients with lung nodules. RESULTS: The technique provided diagnostic quality images with parenchymal lung SNR of 3.18 ± 0.0.60, 4.57 ± 0.87, 5.45 ± 1.02, and 5.89 ± 1.28 for scan times of 5, 8.5, 12, and 15.5 minutes, respectively. The respiratory binning technique resulted in significantly sharper images (p < 0.001) as measured with relative maximum derivative at the diaphragm. Concomitant field corrections visibly improved sharpness of anatomical structures away from iso-center. The image quality was maintained with a slight loss in SNR for simulated scan times down to 8.5 minutes. Inline image reconstruction and artifact correction were achieved in <5 minutes. CONCLUSION: The proposed pulmonary imaging technique combined efficient stack-of-spirals imaging with robust respiratory binning, concomitant field correction, and trajectory correction to generate diagnostic quality images with 1.75 mm isotropic resolution in 8.5 minutes on a high-performance 0.55 Tesla system.


Assuntos
COVID-19 , Imageamento Tridimensional , Artefatos , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos , SARS-CoV-2
13.
J Cardiovasc Magn Reson ; 24(1): 35, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668497

RESUMO

BACKGROUND: Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart failure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic resonance (CMR). METHODS: Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phantom array of vials containing mixtures of water and deuterium oxide. RESULTS: The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine - 0.6%, p = 0.001; prone vs second supine - 2.7%, p < 0.001). In vivo test-retest repeatability in LWD was excellent (- 0.17 ± 0.91%, ICC = 0.97). A regional LWD redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation when supine, and anterior accumulation when prone (difference in anterior-posterior LWD: supine - 11.6 ± 2.7%, prone 5.5 ± 2.7%, second supine - 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following the image reconstruction using the automated pipeline. CONCLUSIONS: Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a high-performance 0.55 T CMR system.


Assuntos
Pulmão , Prótons , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
14.
Magn Reson Med ; 86(3): 1786-1801, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860962

RESUMO

PURPOSE: This work aims to fabricate RF antenna components on metallic needle surfaces using biocompatible polyester tubing and conductive ink to develop an active interventional MRI needle for clinical use at 0.55 Tesla. METHODS: A custom computer numeric control-based conductive ink printing method was developed. Based on electromagnetic simulation results, thin-film RF antennas were printed with conductive ink and used to fabricate a medical grade, 20-gauge (0.87 mm outer diameter), 90-mm long active interventional MRI needle. The MRI visibility performance of the active needle prototype was tested in vitro in 1 gel phantom and in vivo in 1 swine. A nearly identical active needle constructed using a 44 American Wire Gauge insulated copper wire-wound RF receiver antenna was a comparator. The RF-induced heating risk was evaluated in a gel phantom per American Society for Testing and Materials (ASTM) 2182-19. RESULTS: The active needle prototype with printed RF antenna was clearly visible both in vitro and in vivo under MRI. The maximum RF-induced temperature rise of prototypes with printed RF antenna and insulated copper wire antenna after a 3.96 W/kg, 15 min. long scan were 1.64°C and 8.21°C, respectively. The increase in needle diameter was 98 µm and 264 µm for prototypes with printed RF antenna and copper wire-wound antenna, respectively. CONCLUSION: The active needle prototype with conductive ink printed antenna provides distinct device visibility under MRI. Variations on the needle surface are mitigated compared to use of a 44 American Wire Gauge copper wire. RF-induced heating tests support device RF safety under MRI. The proposed method enables fabrication of small diameter active interventional MRI devices having complex geometries, something previously difficult using conventional methods.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Animais , Condutividade Elétrica , Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Suínos , Temperatura
15.
NMR Biomed ; 34(2): e4423, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33029872

RESUMO

Noninvasive measurements of liver perfusion and fibrosis in cirrhotic small animals can help develop treatments for haemodynamic complications of liver disease. Here, we measure liver perfusion in cirrhotic rodents using flow-sensitive alternating inversion recovery arterial spin labelling (FAIR ASL), evaluating agreement with previously validated caval subtraction phase-contrast magnetic resonance imaging (PCMRI) total liver blood flow (TLBF). Baseline differences in cirrhotic rodents and the haemodynamic effects of acute inflammation were investigated using FAIR ASL and tissue T1. Sprague-Dawley rats (nine bile duct ligated [BDL] and ten sham surgery controls) underwent baseline hepatic FAIR ASL with T1 measurement and caval subtraction PCMRI (with two-dimensional infra-/supra-hepatic inferior vena caval studies), induction of inflammation with intravenous lipopolysaccharide (LPS) and repeat liver FAIR ASL with T1 measurement after ~90 minutes. The mean difference between FAIR ASL hepatic perfusion and caval subtraction PCMRI TLBF was -51 ± 30 ml/min/100 g (Bland-Altman 95% limits-of-agreement ±258 ml/min/100 g). The FAIR ASL coefficient of variation was smaller than for caval subtraction PCMRI (29.3% vs 50.1%; P = .03). At baseline, FAIR ASL liver perfusion was lower in BDL rats (199 ± 32 ml/min/100 g vs sham 316 ± 24 ml/min/100 g; P = .01) but liver T1 was higher (BDL 1533 ± 50 vs sham 1256 ± 18 ms; P = .0004). Post-LPS FAIR ASL liver perfusion response differences were observed between sham/BDL rats (P = .02), approaching significance in sham (+78 ± 33 ml/min/100 g; P = .06) but not BDL rats (-49 ± 40 ml/min/100 g; P = .47). Post-LPS differences in liver tissue T1 were nonsignificant (P = .35). FAIR ASL hepatic perfusion and caval subtraction PCMRI TLBF agreement was modest, with significant baseline FAIR ASL liver perfusion and tissue T1 differences in rodents with advanced cirrhosis compared with controls. Following inflammatory stress, differences in hepatic perfusion response were detected between cirrhotic/control animals, but liver T1 was unaffected. Findings underline the potential of FAIR ASL in the assessment of vasoactive treatments for patients with chronic liver disease and inflammation.


Assuntos
Cirrose Hepática Experimental/metabolismo , Angiografia por Ressonância Magnética/métodos , Animais , Área Sob a Curva , Ductos Biliares , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Inflamação , Ligadura , Lipopolissacarídeos/toxicidade , Circulação Hepática , Cirrose Hepática Experimental/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Técnica de Subtração , Veia Cava Inferior/fisiopatologia
16.
NMR Biomed ; 34(8): e4562, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080253

RESUMO

The purpose of this study was to evaluate oxygen-enhanced pulmonary imaging at 0.55 T with 3D stack-of-spirals ultrashort-TE (UTE) acquisition. Oxygen-enhanced pulmonary MRI offers the measurement of regional lung ventilation and perfusion using inhaled oxygen as a contrast agent. Low-field MRI systems equipped with contemporary hardware can provide high-quality structural lung imaging by virtue of the prolonged T2 *. Fortuitously, the T1 relaxivity of oxygen increases at lower field strengths, which is expected to improve the sensitivity of oxygen-enhanced lung MRI. We implemented a breath-held T1 -weighted 3D stack-of-spirals UTE acquisition with a 7 ms spiral-out readout. Measurement repeatability was assessed using five repetitions of oxygen-enhanced lung imaging in healthy volunteers (n = 7). The signal intensity at both normoxia and hyperoxia was strongly dependent on lung tissue density modulated by breath-hold volume during the five repetitions. A voxel-wise correction for lung tissue density improved the repeatability of percent signal enhancement maps (coefficient of variation = 34 ± 16%). Percent signal enhancement maps were compared in 15 healthy volunteers and 10 patients with lymphangioleiomyomatosis (LAM), a rare cystic disease known to reduce pulmonary function. We measured a mean percent signal enhancement of 9.0 ± 3.5% at 0.55 T in healthy volunteers, and reduced signal enhancement in patients with LAM (5.4 ± 4.8%, p = 0.02). The heterogeneity, estimated by the percent of lung volume exhibiting low enhancement, was significantly increased in patients with LAM compared with healthy volunteers (11.1 ± 6.0% versus 30.5 ± 13.1%, p = 0.01), illustrating the capability to measure regional functional deficits.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/química , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Pulmão/patologia , Linfangioleiomiomatose , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
17.
J Cardiovasc Magn Reson ; 23(1): 50, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33952312

RESUMO

PURPOSE: Low-field (0.55 T) high-performance cardiovascular magnetic resonance (CMR) is an attractive platform for CMR-guided intervention as device heating is reduced around 7.5-fold compared to 1.5 T. This work determines the feasibility of visualizing cardiac radiofrequency (RF) ablation lesions at low field CMR and explores a novel alternative method for targeted tissue destruction: acetic acid chemoablation. METHODS: N = 10 swine underwent X-ray fluoroscopy-guided RF ablation (6-7 lesions) and acetic acid chemoablation (2-3 lesions) of the left ventricle. Animals were imaged at 0.55 T with native contrast 3D-navigator gated T1-weighted T1w) CMR for lesion visualization, gated single-shot imaging to determine potential for real-time visualization of lesion formation, and T1 mapping to measure change in T1 in response to ablation. Seven animals were euthanized on ablation day and hearts imaged ex vivo. The remaining animals were imaged again in vivo at 21 days post ablation to observe lesion evolution. RESULTS: Chemoablation lesions could be visualized and displayed much higher contrast than necrotic RF ablation lesions with T1w imaging. On the day of ablation, in vivo myocardial T1 dropped by 19 ± 7% in RF ablation lesion cores, and by 40 ± 7% in chemoablation lesion cores (p < 4e-5). In high resolution ex vivo imaging, with reduced partial volume effects, lesion core T1 dropped by 18 ± 3% and 42 ± 6% for RF and chemoablation, respectively. Mean, median, and peak lesion signal-to-noise ratio (SNR) were all at least 75% higher with chemoablation. Lesion core to myocardium contrast-to-noise (CNR) was 3.8 × higher for chemoablation. Correlation between in vivo and ex vivo CMR and histology indicated that the periphery of RF ablation lesions do not exhibit changes in T1 while the entire extent of chemoablation exhibits T1 changes. Correlation of T1w enhancing lesion volumes indicated in vivo estimates of lesion volume are accurate for chemoablation but underestimate extent of necrosis for RF ablation. CONCLUSION: The visualization of coagulation necrosis from cardiac ablation is feasible using low-field high-performance CMR. Chemoablation produced a more pronounced change in lesion T1 than RF ablation, increasing SNR and CNR and thereby making it easier to visualize in both 3D navigator-gated and real-time CMR and more suitable for low-field imaging.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Ácido Acético , Animais , Miocárdio , Valor Preditivo dos Testes , Suínos
18.
Magn Reson Med ; 84(5): 2364-2375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32291845

RESUMO

PURPOSE: Low-field MRI offers favorable physical properties for SNR-efficient long readout acquisitions such as spiral and EPI. We used a 0.55 tesla (T) MRI system equipped with high-performance hardware to increase the sampling duty cycle and extend the TR of balanced steady-state free precession (bSSFP) cardiac cine acquisitions, which typically are limited by banding artifacts. METHODS: We developed a high-efficiency spiral in-out bSSFP acquisition, with zeroth- and first-gradient moment nulling, and an EPI bSSFP acquisition for cardiac cine imaging using a contemporary MRI system modified to operate at 0.55T. Spiral in-out and EPI bSSFP cine protocols, with TR = 8 ms, were designed to maintain both spatiotemporal resolution and breath-hold length. Simulations, phantom imaging, and healthy volunteer imaging studies (n = 12) were performed to assess SNR and image quality using these high sampling duty-cycle bSSFP sequences. RESULTS: Spiral in-out bSSFP performed favorably at 0.55T and generated good image quality, whereas EPI bSSFP suffered motion and flow artifacts. There was no difference in ejection fraction comparing spiral in-out with standard Cartesian imaging. Moreover, human images demonstrated a 79% ± 21% increase in myocardial SNR using spiral in-out bSSFP and 50% ± 14% increase in SNR using EPI bSSFP as compared with the reference Cartesian acquisition. Spiral in-out acquisitions at 0.55T recovered 69% ± 14% of the myocardial SNR at 1.5T. CONCLUSION: Efficient bSSFP spiral in-out provided high-quality cardiac cine imaging and SNR recovery on a high-performance 0.55T MRI system.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Artefatos , Suspensão da Respiração , Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética
19.
Radiology ; 293(2): 384-393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573398

RESUMO

Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.


Assuntos
Cateterismo , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Adulto , Artefatos , Cateterismo Cardíaco/instrumentação , Meios de Contraste , Desenho de Equipamento , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Metais , Razão Sinal-Ruído
20.
Magn Reson Med ; 81(4): 2666-2675, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450573

RESUMO

PURPOSE: This preclinical study investigated the use of QSM MRI to noninvasively measure venous oxygen saturation (SvO2) in the hepatic and portal veins. METHODS: QSM data were acquired from a cohort of healthy mice (n = 10) on a 9.4 Tesla MRI scanner under normoxic and hyperoxic conditions. Susceptibility was measured in the portal and hepatic veins and used to calculate SvO2 in each vessel under each condition. Blood was extracted from the inferior vena cava of 3 of the mice under each condition, and SvO2 was measured with a blood gas analyzer for comparison. QSM data were also acquired from a cohort of mice bearing liver tumors under normoxic conditions. Susceptibility was measured, and SvO2 calculated in the portal and hepatic veins and compared to the healthy mice. Statistical significance was assessed using a Wilcoxon matched-pairs signed rank test (normoxic vs. hyperoxic) or a Mann-Whitney test (healthy vs. tumor bearing). RESULTS: SvO2 calculated from QSM measurements in healthy mice under hyperoxia showed significant increases of 15% in the portal vein (P < 0.05) and 21% in the hepatic vein (P < 0.01) versus normoxia. These values agreed with inferior vena cava measurements from the blood gas analyzer (26% increase). SvO2 in the hepatic vein was significantly lower in the colorectal liver metastases cohort (30% ± 11%) than the healthy mice (53% ± 17%) (P < 0.05); differences in the portal vein were not significant. CONCLUSION: QSM is a feasible tool for noninvasively measuring SvO2 in the liver and can detect differences due to increased oxygen consumption in livers bearing colorectal metastases.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Veias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Veia Porta/diagnóstico por imagem , Animais , Gasometria , Calibragem , Veias Cerebrais , Neoplasias Colorretais/patologia , Feminino , Hiperóxia , Camundongos , Metástase Neoplásica , Neoplasias Experimentais , Oximetria , Consumo de Oxigênio , Respiração , Taxa Respiratória , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA