Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Immunology ; 158(2): 85-93, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31335975

RESUMO

Bacterial DNA contains CpG oligonucleotide (ODN) motifs to trigger innate immune responses through the endosomal receptor Toll-like receptor 9 (TLR9). One of the cell surface receptors to capture and deliver microbial DNA to intracellular TLR9 is the C-type lectin molecule DEC-205 through its N-terminal C-type lectin-like domain (CTLD). CD93 is a cell surface protein and member of the lectin group XIV with a CTLD. We hypothesized that CD93 could interact with CpG motifs, and possibly serve as a novel receptor to deliver bacterial DNA to endosomal TLR9. Using ELISA and tryptophan fluorescence binding studies we observed that the soluble histidine-tagged CD93-CTLD was specifically binding to CpG ODN and bacterial DNA. Moreover, we found that CpG ODN could bind to CD93-expressing IMR32 neuroblastoma cells and induced more robust interleukin-6 secretion when compared with mock-transfected IMR32 control cells. Our data argue for a possible contribution of CD93 to control cell responsiveness to bacterial DNA in a manner reminiscent of DEC-205. We postulate that CD93 may act as a receptor at plasma membrane for DNA or CpG ODN and to grant delivery to endosomal TLR9.


Assuntos
DNA Bacteriano/imunologia , Regulação da Expressão Gênica/imunologia , Glicoproteínas de Membrana/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores de Complemento/imunologia , Receptor Toll-Like 9/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Transporte Biológico/genética , Transporte Biológico/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Inflamação , Interleucina-6/genética , Interleucina-6/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/genética
3.
Arterioscler Thromb Vasc Biol ; 38(3): 592-598, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284604

RESUMO

OBJECTIVE: Evolocumab, a PCSK9 (proprotein convertase subtilisin kexin type 9)-neutralizing antibody, lowers low-density lipoprotein cholesterol (LDL-C) in homozygous familial hypercholesterolemic (HoFH) patients with reduced LDLR (low-density lipoprotein receptor) function. However, their individual responses are highly variable, even among carriers of identical LDLR genetic defects. We aimed to elucidate why HoFH patients variably respond to PCSK9 inhibition. APPROACH AND RESULTS: Lymphocytes were isolated from 22 HoFH patients enrolled in the TAUSSIG trial (Trial Assessing Long Term Use of PCSK9 Inhibition in Subjects With Genetic LDL Disorders). Ten patients were true homozygotes (FH1/FH1) and 5 identical compound heterozygotes (FH1/FH2). Lymphocytes were plated with or without mevastatin, recombinant PCSK9 (rPCSK9), or a PCSK9-neutralizing antibody. Cell surface LDLR expression was analyzed by flow cytometry. All HoFH lymphocytes had reduced cell surface LDLR expression compared with non-FH lymphocytes, for each treatment modality. Lymphocytes from FH1/FH2 patients (LDLR defective/negative) displayed the lowest LDLR expression levels followed by lymphocytes from FH1/FH1 patients (defective/defective). Mevastatin increased, whereas rPCSK9 reduced LDLR expression. The PCSK9-neutralizing antibody restored LDLR expression. Lymphocytes displaying higher LDLR expression levels were those isolated from patients presenting with lowest levels of LDL-C and apolipoprotein B, before and after 24 weeks of evolocumab treatment. These negative correlations remained significant in FH1/FH1 patients and appeared more pronounced when patients with apolipoprotein E3/E3 genotypes were analyzed separately. Significant positive correlations were found between the levels of LDLR expression and the percentage reduction in LDL-C on evolocumab treatment. CONCLUSIONS: Residual LDLR expression in HoFH is a major determinant of LDL-C levels and seems to drive their individual response to evolocumab.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Homozigoto , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Mutação , Inibidores de PCSK9 , Receptores de LDL/genética , Inibidores de Serina Proteinase/uso terapêutico , Adolescente , Adulto , Anticorpos Monoclonais Humanizados , Apolipoproteína B-100/sangue , Células Cultivadas , LDL-Colesterol/sangue , Quimioterapia Combinada , Ezetimiba/uso terapêutico , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Lovastatina/análogos & derivados , Lovastatina/uso terapêutico , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de LDL/metabolismo , Resultado do Tratamento , Adulto Jovem
4.
Curr Opin Lipidol ; 29(6): 453-458, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199407

RESUMO

PURPOSE OF REVIEW: Our primary objective is to review the most recent findings on the biology of PCSK9 and on two key aspects of PCSK9 inhibition beyond LDL control of great clinical relevance: the regulation of lipoprotein (a) circulating levels by PCSK9 inhibitors and the putative diabetogenic effects of these novel therapies. RECENT FINDINGS: The reality of two distinct extracellular and intracellular pathways by which PCSK9 decreases the abundance of the LDLR at the surface of many cell types, most importantly hepatocytes, has recently been established. In contrast, the exact mechanisms by which PCSK9 inhibitors lower the circulating levels of lipoprotein (a) remain a point of major dispute. Despite strong indications from genetic studies that PCSK9 inhibition should increase diabetes risk, no such effect has been observed in clinical trials, and in-vitro and in-vivo studies do not clarify this issue. SUMMARY: The trafficking pathways by which PCSK9 enhance LDLR degradation via the endolysosomal extracellular route or via the Golgi-lysosomal intracellular route remain to be fully elucidated. The mechanisms by which PCSK9 inhibitors reduce lipoprotein (a) also merit additional research efforts. The role of PCSK9 on glucose metabolism should likewise be studied in depth.


Assuntos
Anticolesterolemiantes/farmacologia , LDL-Colesterol/metabolismo , Pró-Proteína Convertase 9/farmacologia , Inibidores de Proteases/farmacologia , Animais , Anticolesterolemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Humanos , Pró-Proteína Convertase 9/uso terapêutico , Inibidores de Proteases/uso terapêutico
5.
J Lipid Res ; 59(5): 892-900, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540575

RESUMO

Human apoE exhibits three major isoforms (apoE2, apoE3, and apoE4) corresponding to polymorphism in the APOE gene. Total plasma apoE concentrations are closely related to these isoforms, but the underlying mechanisms are unknown. We aimed to describe the kinetics of apoE individual isoforms to explore the mechanisms for variable total apoE plasma concentrations. We used LC-MS/MS to discriminate between isoforms by identifying specific peptide sequences in subjects (three E2/E3, three E3/E3, and three E3/E4 phenotypes) who received a primed constant infusion of 2H3-leucine for 14 h. apoE concentrations and leucine enrichments were measured hourly in plasma. Concentrations of apoE2 were higher than apoE3, and concentrations of apoE4 were lower than apoE3. There was no difference between apoE3 and apoE4 catabolic rates and between apoE2 and apoE3 production rates (PRs), but apoE2 catabolic rates and apoE4 PRs were lower. The mechanisms leading to the difference in total plasma apoE concentrations are therefore related to contrasted kinetics of the isoforms. Production or catabolic rates are differently affected according to the specific isoforms. On these grounds, studies on the regulation of the involved biochemical pathways and the impact of pathological environments are now warranted.


Assuntos
Apolipoproteína E2/sangue , Apolipoproteína E3/sangue , Apolipoproteína E4/sangue , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Isoformas de Proteínas/sangue , Espectrometria de Massas em Tandem
6.
Clin Sci (Lond) ; 132(10): 1075-1083, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29724769

RESUMO

Therapeutic antibodies targeting proprotein convertase subtilisin kexin type 9 (PCSK9) (e.g. alirocumab) lower low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in clinical trials. We recently showed that PCSK9 enhances apolipoprotein(a) [apo(a)] secretion from primary human hepatocytes but does not affect Lp(a) cellular uptake. Here, we aimed to determine how PCSK9 neutralization modulates Lp(a) levels in vivoSix nonhuman primates (NHP) were treated with alirocumab or a control antibody (IgG1) in a crossover protocol. After the lowering of lipids reached steady state, NHP received an intravenous injection of [2H3]-leucine, and blood samples were collected sequentially over 48 h. Enrichment of apolipoproteins in [2H3]-leucine was assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kinetic parameters were calculated using numerical models with the SAAMII software. Compared with IgG1, alirocumab significantly reduced total cholesterol (TC) (-28%), LDL-C (-67%), Lp(a) (-56%), apolipoprotein B100 (apoB100) (-53%), and apo(a) (-53%). Alirocumab significantly increased the fractional catabolic rate of apoB100 (+29%) but not that of apo(a). Conversely, alirocumab sharply and significantly reduced the production rate (PR) of apo(a) (-42%), but not significantly that of apoB100, compared with IgG1, respectively.In line with the observations made in human hepatocytes, the present kinetic study establishes that PCSK9 neutralization with alirocumab efficiently reduces circulating apoB100 and apo(a) levels by distinct mechanisms: apoB primarily by enhancing its catabolism and apo(a) primarily by lowering its production.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticolesterolemiantes/farmacologia , Lipoproteína(a)/sangue , Inibidores de PCSK9 , Animais , Anticorpos Monoclonais Humanizados , Apoproteína(a)/biossíntese , Colesterol/sangue , Estudos Cross-Over , Feminino , Lipídeos/sangue , Macaca fascicularis , Masculino
7.
Clin Sci (Lond) ; 131(4): 261-268, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108631

RESUMO

Since 2012, clinical trials dedicated to proprotein convertase subtilisin kexin type 9 (PCSK9) inhibition with monoclonal antibodies (mAbs) have unambiguously demonstrated robust reductions not only in low-density lipoprotein (LDL) cholesterol (LDL-C) but also in lipoprotein (a) [Lp(a)] levels. The scientific literature published prior to those studies did not provide any evidence for a link between PCSK9 and Lp(a) metabolism. More recent investigations, either in vitro or in vivo, have attempted to unravel the mechanism(s) by which PCSK9 mAbs reduce circulating Lp(a) levels, with some showing a specific implication of the LDL receptor (LDLR) in Lp(a) clearance whereas others found no significant role for the LDLR in that process. This elusive pathway appears clearly distinct from that of the widely prescribed statins that also enhance LDLR function but do not lower circulating Lp (a) levels in humans. So how does PCSK9 inhibition with mAbs reduce Lp(a)? This still remains to be established.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Lipoproteína(a)/sangue , Inibidores de PCSK9 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Humanos , Hiperlipidemias/sangue , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Pró-Proteína Convertase 9/imunologia , Receptores de LDL/fisiologia , Projetos de Pesquisa
8.
Circ Genom Precis Med ; 15(2): e003489, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35133173

RESUMO

BACKGROUND: Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein strongly associated with coronary artery disease (CAD). Lp(a) concentrations are chiefly determined genetically. Investigation of large pedigrees with extreme Lp(a) using modern whole-genome approaches may unravel the genetic determinants underpinning this pathological phenotype. METHODS: A large family characterized by high Lp(a) and increased CAD incidence was recruited by cascade screening. Plasma lipids, lipoproteins, and apolipoproteins concentrations, as well as the size of apo(a) isoforms, were determined enzymatically by high-resolution mass spectrometry and Western blot, respectively. Whole-exome sequencing was performed to search for rare defects in modifier genes. Genetic risk scores (GRS) for Lp(a) and CAD were calculated and their discriminative power was assessed. RESULTS: Seventeen individuals displayed extreme Lp(a) levels including 6 with CAD. Whole-exome sequencing showed no hint for genetic defects outside the LPA locus. The extreme Lp(a) phenotype segregated with the presence of a short apo(a) isoform containing 21 Kringle IV domains. This allele was characterized by the presence of three rare strongly Lp(a) increasing single nucleotide polymorphisms and a significantly increased load of oxidized phospholipids per Lp(a) particle. An Lp(a) GRS consisting of 48 single nucleotide polymorphisms that represent 2001 genome-wide significant LPA single nucleotide polymorphisms, efficiently captured the hyper-Lp(a) phenotype and discriminated affected and nonaffected individuals with great accuracy. The genome-wide GRS for CAD, encompassing 6.6 million single nucleotide polymorphisms, was very high for most family members (>97.5 percentile of the reference population), but this observation was no longer valid when the contribution of the LPA locus was omitted. CONCLUSIONS: High-Lp(a) phenotypes can be successfully captured using the Lp(a) GRS even among closely related family members. In hyper-Lp(a) individuals, LPA can be a major locus driving a very high CAD GRS. This underpins the large contribution of the LPA locus to the cardiovascular genetic risk in families.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Fatores de Risco de Doenças Cardíacas , Humanos , Lipoproteína(a)/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Nutrients ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478034

RESUMO

Atherosclerosis is a hallmark of most cardiovascular diseases. The implication of macrophages in this pathology is widely documented, notably for their contribution to lipid accumulation within the arterial wall, associated with oxidative stress and inflammation processes. In order to prevent or limit the atherosclerosis damage, nutritional approaches and medicinal plant-based therapies need to be considered. In Reunion Island, medicinal plant-based beverages are traditionally used for their antioxidant, lipid-lowering and anti-inflammatory properties. The aim of our study was to assess the protective effects of eight medicinal plant decoctions in an in vitro model of RAW 264.7 murine macrophages exposed to pro-atherogenic conditions (oxidized low-density lipoproteins-ox-LDL-E. coli Lipopolysaccharides-LPS). The impact of polyphenol-rich medicinal plant decoctions on cell viability was evaluated by Neutral Red assay. Fluorescent ox-LDL uptake was assessed by flow cytometry and confocal microscopy. Activation of NF-κB was evaluated by quantification of secreted alkaline phosphatase in RAW-Blue™ macrophages. Our results show that medicinal plant decoctions limited the cytotoxicity induced by ox-LDL on macrophages. Flow cytometry analysis in macrophages demonstrated that medicinal plant decoctions from S. cumini and P. mauritianum decreased ox-LDL uptake and accumulation by more than 70%. In addition, medicinal plant decoctions also inhibited NF-κB pathway activation in the presence of pro-inflammatory concentrations of E. coli LPS. Our data suggest that medicinal plant decoctions exert protective effects on ox-LDL-induced cytotoxicity and limited macrophage lipid uptake. Moreover, herbal preparations displayed anti-inflammatory properties on macrophages that can be of interest for limiting the atherosclerotic process.


Assuntos
Aterosclerose , Macrófagos/fisiologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Anti-Inflamatórios/farmacologia , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Aterosclerose/terapia , Sobrevivência Celular , Humanos , Lipopolissacarídeos/imunologia , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fitoterapia , Células RAW 264.7 , Reunião
10.
Atherosclerosis ; 326: 47-55, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933263

RESUMO

BACKGROUND AND AIMS: Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) is an endogenous inhibitor of the LDL receptor (LDLR). Mendelian randomization studies suggest that PCSK9 deficiency increases diabetes risk, but the underlying mechanisms remain unknown. The aim of our study was to investigate whether PCSK9 or its inhibition may modulate beta cell function. METHODS: We assessed PCSK9 and insulin colocalization in human pancreatic sections by epifluorescent and confocal microscopy. We also investigated the expression and the function of PCSK9 in the human EndoC-ßH1 beta cell line, by ELISA and flow cytometry, respectively. PCSK9 was inhibited with Alirocumab or siRNA. LDLR expression and LDL uptake were assessed by flow cytometry. RESULTS: PCSK9 was expressed and secreted from beta cells isolated from human pancreas as well as from EndoC-ßH1 cells. PCSK9 secretion was enhanced by statin treatment. Recombinant PCSK9 decreased LDLR abundance at the surface of these cells, an effect abrogated by Alirocumab. Alirocumab as well as PCSK9 silencing increased LDLR expression at the surface of EndoC-ßH1 cells. Neither exogenous PCSK9, nor Alirocumab, nor PCSK9 silencing significantly altered glucose-stimulated insulin secretion (GSIS) from these cells. High-low density lipoproteins (LDL) concentrations decreased GSIS, but the addition of PCSK9 or its inhibition did not modulate this phenomenon. CONCLUSIONS: While PCSK9 regulates LDLR abundance in beta cells, inhibition of exogenous or endogenous PCSK9 does not appear to significantly impact insulin secretion. This is reassuring for the safety of PCSK9 inhibitors in terms of beta cell function.


Assuntos
Células Secretoras de Insulina , Pró-Proteína Convertase 9 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases , Receptores de LDL , Subtilisinas
11.
Front Genet ; 12: 728526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659352

RESUMO

Pharmacological inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9) is an established therapeutic option to treat hypercholesterolemia, and plasma PCSK9 levels have been implicated in cardiovascular disease incidence. A number of genetic variants within the PCSK9 gene locus have been shown to modulate PCSK9 levels, but these only explain a very small percentage of the overall PCSK9 interindividual variation. Here we present data on the genetic association structure between PCSK9 levels and genom-wide genetic variation in a healthy sample from the general population. We performed a genome-wide association study of plasma PCSK9 levels in a sample of Brazilian individuals enrolled in the Estudo Longitudinal de Saude do Adulto cohort (n=810). Enrolled individuals were free from cardiovascular disease, diabetes and were not under lipid-lowering medication. Genome-wide genotyping was conducted using the Axiom_PMRA.r3 array, and imputation was performed using the TOPMED multi-ancestry sample panel as reference. Total PCSK9 plasma concentrations were determined using the Quantikine SPC900 ELISA kit. We observed two genome-wide significant loci and seven loci that reached the pre-defined value of p threshold of 1×10-6. Significant variants were near KCNA5 and KCNA1, and LINC00353. Genetic variation at the PCSK9 locus was able to explain approximately 4% of the overall interindividual variations in PCSK9 levels. Colocalization analysis using eQTL data suggested RWDD3, ATXN7L1, KCNA1, and FAM177A1 to be potential mediators of some of the observed associations. Our results suggest that PCSK9 levels may be modulated by trans genetic variation outside of the PCSK9 gene and this may have clinical implications. Understanding both environmental and genetic predictors of PCSK9 levels may help identify new targets for cardiovascular disease treatment and contribute to a better assessment of the benefits of long-term PCSK9 inhibition.

12.
Atherosclerosis ; 293: 49-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31835041

RESUMO

BACKGROUND AND AIMS: PCSK9 is an endogenous inhibitor of the LDL receptor pathway. Recently, Mendelian randomization studies have raised a doubt about the diabetogenic risk of PCSK9 inhibitors. Here, we assessed the relationship between plasma PCSK9 levels and the risk of new onset diabetes (NOD). METHODS: Fasting plasma PCSK9 levels were measured at baseline by ELISA in subjects without lipid lowering treatment in IT-DIAB (n = 233 patients with prediabetes, follow-up 5 years) and ELSA-Brasil (n = 1751; 27.5% with prediabetes, follow-up 4 years) prospective cohorts. The primary outcome in both studies was the incidence of NOD. The association of NOD with plasma PCSK9 levels was studied using multivariable Cox models. RESULTS: Plasma PCSK9 levels were not significantly associated with NOD in IT-DIAB (HR (+1SD) 0.96, CI95% [0.76; 1.21]) and ELSA-Brasil (OR (+1SD) 1.13 [0.89; 1.42]). In ELSA-Brasil, a significant positive association between PCSK9 and worsening of glucose homeostasis, including the progression from normoglycemia to prediabetes, was found (OR (+1SD) 1.17 [1.04; 1.30], p = 0.0074). Plasma PCSK9 concentration was also positively associated with the change in fasting plasma glucose between the first and second visit in ELSA-Brasil (ß = 0.053, CI95% [0.006; 0.10], p = 0.026). Plasma PCSK9 levels positively correlated with total cholesterol in IT-DIAB and ELSA-Brasil, but not with glucose homeostasis parameters, except for a positive correlation with HOMA-IR in ELSA-Brasil. CONCLUSIONS: Plasma PCSK9 levels were not significantly associated with NOD risk in longitudinal analyses. These data suggest that inhibition of the PCSK9 extra-cellular pathway should not be deleterious for glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Pró-Proteína Convertase 9/sangue , Biomarcadores/sangue , Brasil/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo
13.
Pathology ; 51(2): 177-183, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30522786

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial protein governing the circulating levels of low density lipoprotein-cholesterol (LDL-C), by virtue of its pivotal role in the degradation of the LDL receptor (LDLR). In the last 15 years, in vitro and in vivo studies have allowed our understanding of the physiological role of PCSK9. In the current report, we review the key studies that have established the mode of action of PCSK9, leading to the development of PCSK9 inhibitors for clinical use. Data from clinical trials investigating these therapies clearly and unambiguously demonstrate the safety and efficacy of these new drugs that have the power to dramatically reduce LDL-C and associated cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , LDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/metabolismo , Inibidores de PCSK9 , Inibidores de Proteases/uso terapêutico , Receptores de LDL/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Pró-Proteína Convertase 9/metabolismo
14.
J Clin Lipidol ; 12(1): 130-136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29103916

RESUMO

BACKGROUND: Proprotein subtilisin kexin type 9 (PCSK9) and lipoprotein (a) [Lp(a)] levels are causative risk factors for coronary heart disease. OBJECTIVES: The objective of the study was to determine the impact of lipid-lowering treatments on circulating PCSK9 and Lp(a). METHODS: We measured PCSK9 and Lp(a) levels in plasma samples from Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events trial patients with coronary heart disease and/or type II diabetes (T2D) mellitus. Patients received atorvastatin, which was titrated (10, 20, 40, or 80 mg/d) to achieve low-density lipoprotein cholesterol levels <100 mg/dL (baseline) and were subsequently randomized either to atorvastatin + torcetrapib, a cholesterol ester transfer protein inhibitor, or to atorvastatin + placebo. RESULTS: At baseline, both plasma PCSK9 and Lp(a) were dose-dependently increased with increasing atorvastatin doses. Compared with patients without T2D, those with T2D had higher PCSK9 (357 ± 123 vs 338 ± 115 ng/mL, P = .0012) and lower Lp(a) levels (28 ± 32 vs 32 ± 33 mg/dL, P = .0005). Plasma PCSK9 levels significantly increased in patients treated with torcetrapib (+13.1 ± 125.3 ng/mL [+3.7%], P = .005), but not in patients treated with placebo (+2.6 ± 127.9 ng/mL [+0.7%], P = .39). Plasma Lp(a) levels significantly decreased in patients treated with torcetrapib (-3.4 ± 10.7 mg/dL [-11.1%], P < .0001), but not in patients treated with placebo (+0.3 ± 9.4 mg/dL [+0.1%], P = .92). CONCLUSION: In patients at high cardiovascular disease risk, PCSK9 and Lp(a) are positively and dose-dependently correlated with atorvastatin dosage, whereas the presence of T2D is associated with higher PCSK9 but lower Lp(a) levels. Cholesterol ester transfer protein inhibition with torcetrapib slightly increases PCSK9 levels and decreases Lp(a) levels.


Assuntos
Atorvastatina/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Diabetes Mellitus Tipo 2/patologia , Lipoproteína(a)/sangue , Pró-Proteína Convertase 9/sangue , Idoso , Doenças Cardiovasculares/complicações , LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/complicações , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Quinolinas/uso terapêutico , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA