Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 15: 124, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994494

RESUMO

BACKGROUND: Although chickpea (Cicer arietinum L.), an important food legume crop, is sensitive to salinity, considerable variation for salinity tolerance exists in the germplasm. To improve any existing cultivar, it is important to understand the genetic and physiological mechanisms underlying this tolerance. RESULTS: In the present study, 188 recombinant inbred lines (RILs) derived from the cross ICCV 2 × JG 11 were used to assess yield and related traits in a soil with 0 mM NaCl (control) and 80 mM NaCl (salinity) over two consecutive years. Salinity significantly (P < 0.05) affected almost all traits across years and yield reduction was in large part related to a reduction in seed number but also a reduction in above ground biomass. A genetic map was constructed using 56 polymorphic markers (28 simple sequence repeats; SSRs and 28 single nucleotide polymorphisms; SNPs). The QTL analysis revealed two key genomic regions on CaLG05 (28.6 cM) and on CaLG07 (19.4 cM), that harboured QTLs for six and five different salinity tolerance associated traits, respectively, and imparting either higher plant vigour (on CaLG05) or higher reproductive success (on CaLG07). Two major QTLs for yield in the salinity treatment (explaining 12 and 17% of the phenotypic variation) were identified within the two key genomic regions. Comparison with already published chickpea genetic maps showed that these regions conferred salinity tolerance across two other populations and the markers can be deployed for enhancing salinity tolerance in chickpea. Based on the gene ontology annotation, forty eight putative candidate genes responsive to salinity stress were found on CaLG05 (31 genes) and CaLG07 (17 genes) in a distance of 11.1 Mb and 8.2 Mb on chickpea reference genome. Most of the genes were known to be involved in achieving osmoregulation under stress conditions. CONCLUSION: Identification of putative candidate genes further strengthens the idea of using CaLG05 and CaLG07 genomic regions for marker assisted breeding (MAB). Further fine mapping of these key genomic regions may lead to novel gene identification for salinity stress tolerance in chickpea.


Assuntos
Cicer/genética , Cruzamentos Genéticos , Genoma de Planta , Endogamia , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Tolerância ao Sal/genética , Análise de Variância , Biomassa , Mapeamento Cromossômico , Mineração de Dados , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Padrões de Herança/genética , Característica Quantitativa Herdável , Salinidade , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética
2.
Funct Plant Biol ; 42(2): 162-174, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480662

RESUMO

The reproductive phase of chickpea (Cicer arietinum L.) is more sensitive to water deficits than the vegetative phase. The characteristics that confer drought tolerance to genotypes at the reproductive stage are not well understood; especially which characteristics are responsible for differences in seed yield under water stress. In two consecutive years, 10 genotypes with contrasting yields under terminal drought stress in the field were exposed to a gradual, but similar, water stress in the glasshouse. Flower number, flower+pod+seed abortion percentage, pod number, pod weight, seed number, seed yield, 100-seed weight (seed size), stem+leaf weight and harvest index (HI) were recorded in well watered plants (WW) and in water-stressed plants (WS) when the level of deficit was mild (phase I), and when the stress was severe (phase II). The WS treatment reduced seed yield, seed and pod number, but not flower+pod+seed abortion percentage or 100-seed weight. Although there were significant differences in total seed yield among the genotypes, the ranking of the seed yield in the glasshouse differed from the ranking in the field, indicating large genotype×environment interaction. Genetic variation for seed yield and seed yield components was observed in the WW treatment, which also showed differences across years, as well as in the WS treatment in both the years, so that the relative seed yield and relative yield components (ratio of values under WS to those under WW) were used as measures of drought tolerance. Relative total seed yield was positively associated with relative total flower number (R2=0.23 in year 2) and relative total seed number (R2=0.83, R2=0.79 in years 1 and 2 respectively). In phase I (mild stress), relative yield of seed produced in that phase was found to be associated with the flower number in both the years (R2=0.69, R2=0.76 respectively). Therefore, the controlled drought imposition that was used, where daily water loss from the soil was made equal for all plants, revealed genotypic differences in the sensitivity of the reproductive process to drought. Under these conditions, the seed yield differences in chickpea were largely related to the capacity to produce a large number of flowers and to set seeds, especially in the early phase of drought stress when the degree of water deficit was mild.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA