Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Mater ; 21(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949868

RESUMO

Ferrimagnets composed of multiple and antiferromagnetically coupled magnetic elements have attracted much attention recently as a material platform for spintronics. They offer the combined advantages of both ferromagnets and antiferromagnets, namely the easy control and detection of their net magnetization by an external field, antiferromagnetic-like dynamics faster than ferromagnetic dynamics and the potential for high-density devices. This Review summarizes recent progress in ferrimagnetic spintronics, with particular attention to the most-promising functionalities of ferrimagnets, which include their spin transport, spin texture dynamics and all-optical switching.


Assuntos
Magnetismo
2.
Opt Lett ; 48(11): 2889-2892, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262236

RESUMO

The effect of optical rectification (OR) in the terahertz range (THz rectification, TR) is experimentally demonstrated. The effect consists of generating a DC voltage on the faces of a ferroelectric triglycine sulfate (TGS) single crystal under the action of pulsed radiation with a frequency of 1.57 and 1.96 THz and an electric field strength per pulse of 1.3 and 1.5 MV/m, respectively. The FLARE FELIX free-electron laser system (Radboud University, The Netherlands) was used as a THz radiation source. The TR effect makes it possible to directly determine the nonlinear susceptibilities of media (including those under conditions of strong absorption) without any reference or optical channel calibration and also without the need of Fourier transform.

3.
Small ; 17(14): e2006757, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709615

RESUMO

The construction of a practical crystalline molecular machine faces two challenges: to realize a collective molecular movement, and to amplify this movement into a precisely controlled mechanical response in real time and space. Thermosalient single crystals display cooperative molecular movements that are converted to strong macroscopic mechanical responses or shape deformations during temperature-induced structural phase transitions. However, these collective molecular movements are hard to control once initiated, and often feature thermal hystereses that are larger than 10 °C, which greatly hamper their practical applications. Here, it is demonstrated that the phase boundaries of the thermomechanical molecular crystal based on a fluorenone derivative 4-DBpFO can be used to finely control its structural phase transition. When this phase transition is triggered at two opposite crystal faces, it is accompanied by two parallel phase boundaries that can be temperature controlled to move forward, backward, or to halt, benefitting from the stored elastic energy between the parallel boundaries. Moreover, the thermal hysteresis is greatly decreased to 2-3 °C, which allows for circular heating/cooling cycles that can produce a continuous work output.

4.
Nano Lett ; 18(9): 5411-5417, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102548

RESUMO

Hybrid organic/inorganic lead halide perovskites (LHPs) have recently emerged as extremely promising photonic materials. However, the exploration of their optical nonlinearities has been mainly focused on the third- and higher-order nonlinear optical (NLO) effects. Strong second-order NLO responses are hardly expected from ordinary LHPs due to their intrinsic centrosymmetric structures, but are highly desirable for advancing their applications in the next generation integrated photonic circuits. Here we demonstrate the fabrication of a novel noncentrosymmetric LHP material by introducing chiral amines as the organic component. The nanowires grown from this new LHP material crystallize in a noncentrosymmetric P1 space group and demonstrate highly efficient second harmonic generation (SHG) with high polarization ratios and chiroptical NLO effects. Such a chiral perovskite skeleton could provide a new platform for future engineering of optoelectronic functionalities of hybrid perovskite materials.

5.
Nano Lett ; 16(12): 7352-7356, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960510

RESUMO

We report a novel approach to modify the second order nonlinear optical (NLO) susceptibility of organic nanofiber crystals by hybridization with the optical modes of microcavities in the strong coupling regime. The wavelength dependence of the SHG efficiency displays two intense peaks corresponding to the so-formed light-matter hybrid states. Our results demonstrate an enhancement of the resonant SHG efficiency of the lower polariton by 2 orders of magnitude for the collectively coupled molecules as compared to that of the same material outside the microcavity. This study is a proof of principle that opens a new direction for NLO of organic materials in subwavelength resonators.

6.
Opt Lett ; 41(21): 5071-5073, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805688

RESUMO

Single-frequency terahertz modulation of the magneto-optical Faraday effect with a record amplitude of the polarization rotation of ∼0.5° is achieved using a slab of the etalon Faraday rotator crystal Tb3Ga5O12. The modulation is the result of the interaction of two counterpropagating laser pulses via the optical Kerr effect. The frequency of the modulation is determined by the applied magnetic field and is continuously tunable in a terahertz frequency range between 0 and 0.7 THz.

7.
Soft Matter ; 12(3): 853-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26549212

RESUMO

Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces.

8.
Nano Lett ; 15(10): 6862-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26312732

RESUMO

Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the material's heterogeneity.

9.
Small ; 11(9-10): 1113-29, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25358754

RESUMO

Photonic circuits are expected to greatly contribute to the next generation of integrated chips, as electronic integrated circuits become confronted with bottlenecks such as heat generation and bandwidth limitations. One of the main challenges for the state-of-the-art photonic circuits lies in the development of optical materials with high nonlinear optical (NLO) susceptibilities, in particular in the wavelength and subwavelength dimensions which are compatible with on-chip technologies. In this review, the varied approaches to micro-/nanosized NLO materials based on building blocks of bio- and biomimetic molecules, as well as synthetic D-π-A chromophores, have been categorized as supramolecular self-assemblies, molecular scaffolds, and external force directed assemblies. Such molecular and supramolecular NLO materials have intrinsic advantages, such as structural diversities, high NLO susceptibilities, and clear structure-property relationships. These "bottom-up" fabrication approaches are proposed to be combined with the "top-down" techniques such as lithography, etc., to generate multifunctionality by coupling light and matter on the (sub)wavelength scale.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Óptica e Fotônica , Amiloide/química , Biomimética , Eletrônica , Desenho de Equipamento , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Luz , Substâncias Macromoleculares , Microscopia de Fluorescência , Dinâmica não Linear , Peptídeos/química , Fótons , Silício/química , Difração de Raios X
10.
Opt Express ; 23(11): 14010-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072770

RESUMO

Liquid crystals are superior optical materials for large area displays, but it is considered that their collective and slow-millisecond response makes them useless for ultrafast optical applications. In contrast to that, we here demonstrate an ultrafast optical response of a nematic liquid crystal, which is induced by an intense femtosecond optical impulse. We show that the refractive index of the nematic liquid crystal pentyl-cyanobiphenyl can be modulated at a time scale as fast as 500 fs via a coherently excited optical Kerr effect. The change in the refractive index is in the order of 10-4 at a fluence of 4 mJ/cm2 and is strongly polarization dependent. This unprecedented result opens new ways towards ultrafast all-optical modulation in liquid crystal-based devices.

11.
Phys Chem Chem Phys ; 17(42): 28372-8, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26104269

RESUMO

Bi-metallic nanoalloys of mixed 3d-4d or 3d-5d elements are promising candidates for technological applications. The large magnetic moment of the 3d materials in combination with a high spin-orbit coupling of the 4d or 5d materials give rise to a material with a large magnetic moment and a strong magnetic anisotropy, making them ideally suitable in for example magnetic storage devices. Especially for clusters, which already have a higher magnetic moment compared to the bulk, these alloys can profit from the cooperative role of alloying and size reduction in order to obtain magnetically stable materials with a large magnetic moment. Here, the influence of doping of small cobalt clusters on the spin and orbital magnetic moment has been studied for the cations [Co(8-14)Au](+) and [Co(10-14)Rh](+). Compared to the undoped pure cobalt [Co(N)](+) clusters we find a significant increase in the spin moment for specific Co(N-1)Au(+) clusters and a very strong increase in the orbital moment for some Co(N-1)Rh(+) clusters, with more than doubling for Co12Rh(+). This result shows that substitutional doping of a 3d metal with even just one atom of a 4d or 5d metal can lead to dramatic changes in both spin and orbital moment, opening up the route to novel applications.

12.
Nano Lett ; 14(7): 3903-7, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24936774

RESUMO

The alignment of Liquid Crystal (LC) molecules, essential for their applications in optical devices such as displays, is usually controlled by functionalizing their confining surfaces by either patterning or by specific surfactants that induce either parallel or perpendicular molecular arrangement. Inducing a bistable alignment, such as in the new zenithal bistable displays, offers new opportunities in terms of new functionalities and lower energy consumption but a full understanding of such bistable alignment appears still complicated. Here we present a simple phenomenological model that includes surface topography and chemistry. The predicted orientational transitions and bistable states are in excellent agreement with experiments, thus making this a proper tool to design multistable 3D command layers.

13.
J Phys Condens Matter ; 36(36)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38565125

RESUMO

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

14.
Rep Prog Phys ; 76(2): 026501, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377279

RESUMO

This review discusses the recent studies of magnetization dynamics and the role of angular momentum in thin films of ferrimagnetic rare-earth-transition metal (RE-TM) alloys, e.g. GdFeCo, where both magnetization and angular momenta are temperature dependent. It has been experimentally demonstrated that the magnetization can be manipulated and even reversed by a single 40 fs laser pulse, without any applied magnetic field. This switching is found to follow a novel reversal pathway, that is shown however to depend crucially on the net angular momentum, reflecting the balance of the two opposite sublattices. In particular, optical excitation of ferrimagnetic GdFeCo on a time scale pertinent to the characteristic time of the exchange interaction between the RE and TM spins, i.e. on the time scale of tens of femtoseconds, pushes the spin dynamics into a yet unexplored regime, where the two exchange-coupled magnetic sublattices demonstrate substantially different dynamics. As a result, the reversal of spins appears to proceed via a novel transient state characterized by a ferromagnetic alignment of the Gd and Fe magnetic moments, despite their ground-state antiferromagnetic coupling.Thus, optical manipulation of magnetic order by femtosecond laser pulses has developed into an exciting and still expanding research field that keeps being fueled by a continuous stream of new and sometimes counterintuitive results. Considering the progress in the development of plasmonic antennas and compact ultrafast lasers, optical control of magnetic order may also potentially revolutionize data storage and information processing technologies.

15.
ACS Photonics ; 10(2): 552-553, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36820327

RESUMO

[This corrects the article DOI: 10.1021/acsphotonics.7b01402.].

16.
Biomacromolecules ; 12(4): 1349-54, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21388228

RESUMO

Phase transitions in organic and inorganic materials are well-studied classical phenomena, where a change in the crystal space group symmetry induces a wide variation of physical properties, permitted by the crystalline symmetry in each phase. Here we observe a conformational induced transition in bioinspired peptide nanotubes (PNTs). We found that the PNTs change their original molecular assembly from a linear peptide conformation to a cyclic one, followed by a change of the nanocrystalline structure from a noncentrosymmetric hexagonal space group to a centrosymmetric orthorhombic space group. The observed transition is irreversible and induces a profound variation in the PNTs properties, from the microscopic to the macroscopic level. In this context, we follow the unique changes in the molecular, morphological, piezoelectric, second harmonic generation, and wettability properties of the PNTs.


Assuntos
Nanotubos , Peptídeos/química , Microscopia Eletrônica de Transmissão e Varredura , Termogravimetria , Molhabilidade , Difração de Raios X
17.
Nanoscale ; 13(46): 19367-19375, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698755

RESUMO

The quest to improve the density, speed and energy efficiency of magnetic memory storage has led to the exploration of new ways of optically manipulating magnetism at the ultrafast time scale, in particular in ferrimagnetic alloys. While all-optical magnetization switching is well-established on the femtosecond timescale, lateral nanoscale confinement and thus the potential significant reduction of the size of the magnetic element remains an outstanding challenge. Here we employ resonant electromagnetic energy funneling through plasmon nanoantennas to influence the demagnetization dynamics of a ferrimagnetic TbCo alloy thin film. We demonstrate how Ag nanoring-shaped antennas under resonant optical femtosecond pumping reduce the overall demagnetization in the underlying films up to three times compared to non-resonant illumination. We attribute such a substantial reduction to the nanoscale confinement of the demagnetization process. This is qualitatively supported by the electromagnetic simulations that strongly evidence the resonant optical energy-funneling to the nanoscale from the nanoantennas into the ferrimagnetic film. This observation is an important step for reaching deterministic ultrafast all-optical magnetization switching at the nanoscale in such systems, opening a route to develop nanoscale ultrafast magneto-optics.

18.
Phys Chem Chem Phys ; 12(47): 15414-22, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21046023

RESUMO

The kinetics of nickel electrodeposition through a template of ordered polystyrene spheres is addressed experimentally and applied to prepare a series of metallic inverse opals with a non-integer number of layers. The observed layer-by-layer growth is discussed in terms of subsequently increasing disorder of the growth front. Reflection and transmission spectra of the samples demonstrate that the key optical features of these photonic crystals are most pronounced when the thickness does not essentially exceed two layers. The intensities and band positions can be additionally tuned by varying the height of the metal coating continuously, not discretely. These findings are confirmed semi-quantitatively by means of computational modeling of the spectra. Specific deposition current transients for in situ control of geometric parameters are discussed.

19.
Adv Mater ; 32(3): e1806736, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30883987

RESUMO

Halide perovskites provide an ideal platform for engineering highly promising semiconductor materials for a wide range of applications in optoelectronic devices, such as photovoltaics, light-emitting diodes, photodetectors, and lasers. More recently, increasing research efforts have been directed toward the nonlinear optical properties of halide perovskites because of their unique chemical and electronic properties, which are of crucial importance for advancing their applications in next-generation photonic devices. Here, the current state of the art in the field of nonlinear optics (NLO) in halide perovskite materials is reviewed. Halide perovskites are categorized into hybrid organic/inorganic and pure inorganic ones, and their second-, third-, and higher-order NLO properties are summarized. The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed. Several potential perspectives and research directions of these promising materials for nonlinear optics are presented.

20.
Nat Commun ; 10(1): 4573, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594954

RESUMO

Mechanically responsive molecular crystals that reversibly change shape triggered by external stimuli are invaluable for the design of actuators for soft robotics, artificial muscles and microfluidic devices. However, their strong deformations usually lead to their destruction. We report a fluorenone derivative (4-DBpFO) showing a strong shear deformation upon heating due to a structural phase transition which is reproducible after more than hundred heating/cooling cycles. Molecular dynamic simulations show that the transition occurs through a nucleation-and-growth mechanism, triggered by thermally induced rotations of the phenyl rings, leading to a rearrangement of the molecular configuration. The applicability as actuator is demonstrated by displacing a micron-sized glass bead over a large distance, delivering a kinetic energy of more than 65 pJ, corresponding to a work density of 270 J kg-1. This material can serve as a prototype structure to direct the development of new types of robust molecular actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA