Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 255: 109714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527733

RESUMO

Beta-2 glycoprotein I (ß2GPI) is a phospholipid-binding plasma protein and prominent autoantigen in antiphospholipid syndrome (APS). Here, we tested the hypothesis that ß2GPI might bind to not only phospholipids, but also cell-free DNA and neutrophil extracellular traps (NETs). We report that ß2GPI interacts with cell-free DNA from different species, as well as NETs, in a dose-dependent manner, retarding their migration in an agarose-gel electrophoretic mobility shift assay. We confirm the direct binding interaction of ß2GPI with DNA and NETs by ELISA. We also demonstrate that ß2GPI colocalizes with NET strands by immunofluorescence microscopy. Finally, we provide evidence that ß2GPI-DNA complexes can be detected in the plasma of APS patients, where they positively correlate with an established biomarker of NET remnants. Taken together, our findings indicate that ß2GPI interacts with DNA and NETs, and suggest that this interaction may play a role as a perpetuator and/or instigator of autoimmunity in APS.

2.
Blood ; 136(25): 2933-2945, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331924

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


Assuntos
Autoanticorpos/imunologia , Plaquetas/imunologia , Imunoglobulina G/imunologia , Nefrite Lúpica/imunologia , Ativação Plaquetária/imunologia , Receptores de IgG/imunologia , Animais , Autoanticorpos/genética , Plaquetas/patologia , Modelos Animais de Doenças , Imunoglobulina G/genética , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Camundongos , Camundongos Transgênicos , Ativação Plaquetária/genética , Receptores de IgG/genética
3.
J Biol Chem ; 293(26): 10245-10263, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29769319

RESUMO

The consequences of apoptosis extend beyond the mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here, we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPTSEL) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPTSEL responders fully resistant to apoptotic target-induced death (∼85% survival versus <10% survival of nonselected cells) but do so while retaining sensitivity to all other target-induced responses, including inhibition of proliferation and growth. Moreover, the resistance of BU.MPTSEL responders is specific to target-induced apoptosis, as apoptosis in response to other suicidal stimuli occurs normally. Comparison of the signaling events induced by apoptotic target exposure in selected versus nonselected responders indicated that the acquired resistance of BU.MPTSEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets.


Assuntos
Adaptação Fisiológica , Apoptose , Carcinogênese , Células Epiteliais/citologia , Fenótipo , Linhagem Celular , Túbulos Renais Proximais/citologia , Necrose/patologia
4.
Immunol Cell Biol ; 97(9): 799-814, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187539

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies against diverse self-antigens with damage to multiple organs. Immunization with the SLE autoantigen ß2 -glycoprotein I (ß2 GPI) and lipopolysaccharide (LPS), a known trigger of necroptosis, induces a murine model of SLE. We hypothesized that necroptotic cells, like apoptotic cells, provide a "scaffold" of cellular self-antigens, but, unlike apoptotic cells, necroptotic cells do so in a proinflammatory and immunogenic context. We demonstrate that ß2 GPI indeed binds to necroptotic cells and serves as a target for anti-ß2 GPI autoantibodies. We further demonstrate that necroptotic, but not apoptotic, cells promote antigenic presentation of ß2 GPI to CD4 T cells by dendritic cells. Finally, we show that ß2 GPI/LPS-immunized mice deficient in RIPK3 (receptor-interacting serine/threonine-protein kinase 3) or MLKL (mixed lineage kinase domain like), and consequently unable to undergo necroptosis, have reduced SLE autoantibody production and pathology. RIPK3-/- mice had low levels of SLE autoantibodies and no renal pathology, while MLKL-/- mice produced low levels of SLE autoantibodies initially, but later developed levels comparable with wild type (WT) mice and pathology intermediate to that of WT and RIPK3-/- mice. Serum cytokine levels induced by LPS tended to be lower in RIPK3-/- and MLKL-/- mice than in WT mice, suggesting that impaired proinflammatory cytokine production may impact the initiation of autoantibody production in both strains. Our data suggest that self-antigen (i.e. ß2 GPI) presented in the context of necroptosis and proinflammatory signals may be sufficient to overcome immune tolerance and induce SLE.


Assuntos
Autoantígenos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Necroptose/imunologia , beta 2-Glicoproteína I/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/metabolismo , Apoptose , Autoanticorpos/imunologia , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
5.
J Biol Chem ; 290(9): 5543-55, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25555913

RESUMO

Systemic lupus erythematosus (SLE) is a prototypic model for B cell epitope spread in autoimmunity. Autoantibodies to numerous and molecularly distinct self-antigens emerge in a sequential manner over several years, leading to disease manifestations. Among the earliest autoantibodies to appear are those targeting the apoptotic cell-binding protein ß2-glycoprotein I (ß2GPI). Notably, mice immunized with ß2GPI and LPS display a remarkably similar pattern of autoantibody emergence to that seen in human SLE. Here, we used this model to investigate whether epitope spread to SLE-related autoantibodies is associated with a unique or limited ß2GPI-specific T cell response. We ask whether MHC class II haplotype and its associated T cell epitope restriction impact epitope spread to SLE-related autoantibodies. We found that ß2GPI/LPS-immunized mice produced similar SLE-related autoantibody profiles regardless of their ß2GPI T cell epitope specificity or MHC class II haplotype. Although ß2GPI T cell epitope specificity was clearly determined by MHC class II haplotype, a number of different ß2GPI T cell epitopes were associated with epitope spread to SLE-related autoantibodies. Notably, one ß2GPI T cell epitope (peptide 23, NTGFYLNGADSAKCT) was also recognized by T cells from an HLA-DRB1*0403(+) autoimmune patient. These data suggest that the generation of a ß2GPI-reactive T cell response is associated with epitope spread to SLE-related autoantibodies, independent of epitope specificity or MHC class II restriction. On the basis of these findings, we propose that factors enabling a ß2GPI-reactive T cell response may predispose individuals to the development of SLE-related autoantibodies independent of their MHC class II haplotype.


Assuntos
Autoanticorpos/imunologia , Epitopos de Linfócito T/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/imunologia , beta 2-Glicoproteína I/imunologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/metabolismo , Feminino , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Haplótipos/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Hibridomas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Linfócitos T/metabolismo , beta 2-Glicoproteína I/metabolismo
6.
J Biol Chem ; 290(37): 22352-69, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26183782

RESUMO

Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/fisiologia , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Nucleotídeos de Adenina/genética , Nucleotídeos de Adenina/metabolismo , Animais , Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia
7.
J Autoimmun ; 58: 90-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25623266

RESUMO

Autoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production. Thus, we generated a NOD.H2(k) congenic strain bearing B10 alleles at the locus comprised within the D12Mit184 and D12Mit12 markers, which we named NOD.H2(k)-Chr12. We determined the biological relevance of the Chr12 locus on the autoimmune process using an antigen-specific TCR transgenic autoimmune mouse model. Specifically, the 3A9 TCR transgene, which recognizes a peptide from hen egg lysozyme (HEL) in the context of I-A(k), and the HEL transgene, which is expressed under the rat-insulin promoter (iHEL), were bred into the NOD.H2(k)-Chr12 congenic strain. In the resulting 3A9 TCR:iHEL NOD.H2(k)-Chr12 mice, we observed a significant decrease in diabetes incidence as well as a decrease in both the quantity and affinity of HEL-specific IgG autoantibodies relative to 3A9 TCR:iHEL NOD.H2(k) mice. Notably, the decrease in autoantibodies due to the Chr12 locus was not restricted to the TCR transgenic model, as it was also observed in the non-transgenic NOD.H2(k) setting. Of importance, antibody affinity maturation upon immunization and re-challenge was also impeded in NOD.H2(k)-Chr12 congenic mice relative to NOD.H2(k) mice. Together, these results demonstrate that a genetic variant(s) present within the Chr12 locus plays a global role in modulating antibody affinity maturation.


Assuntos
Afinidade de Anticorpos , Autoanticorpos/biossíntese , Cromossomos de Mamíferos/genética , Diabetes Mellitus Tipo 1/imunologia , Loci Gênicos , Animais , Afinidade de Anticorpos/genética , Autoanticorpos/genética , Autoantígenos/genética , Autoantígenos/imunologia , Autoimunidade/genética , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Loci Gênicos/genética , Variação Genética , Humanos , Insulina/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Muramidase/genética , Muramidase/imunologia , Ratos
8.
J Biol Chem ; 287(17): 13761-77, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396534

RESUMO

Apoptosis allows for the removal of damaged, aged, and/or excess cells without harm to surrounding tissue. To accomplish this, cells undergoing apoptosis acquire new activities that enable them to modulate the fate and function of nearby cells. We have shown that receptor-mediated recognition of apoptotic versus necrotic target cells by viable kidney proximal tubular epithelial cells (PTEC) modulates the activity of several signaling pathways critically involved in regulation of proliferation and survival. Generally, apoptotic and necrotic targets have opposite effects with apoptotic targets inhibiting and necrotic targets stimulating the activity of these pathways. Here we explore the consequences of these signaling differences. We show that recognition of apoptotic targets induces a profound decrease in PTEC viability through increased responder cell death and decreased proliferation. In contrast, necrotic targets promote viability through decreased death and increased proliferation. Both target types mediate their effects through a network of Akt-dependent and -independent events. Apoptotic targets modulate Akt-dependent viability in part through a reduction in cellular ß-catenin and decreased inactivation of Bad. In contrast, Akt-independent modulation of viability occurs through activation of caspase-8, suggesting that death receptor-dependent pathways are involved. Apoptotic targets also activate p38, which partially protects responders from target-induced death. The response of epithelial cells varies depending on their tissue origin. Some cell lines, like PTEC, demonstrate decreased viability, whereas others (e.g. breast-derived) show increased viability. By acting as sentinels of environmental change, apoptotic targets allow neighboring cells, especially non-migratory epithelial cells, to monitor and potentially adapt to local stresses.


Assuntos
Apoptose , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetinae , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Homeostase , Humanos , Sistema Imunitário , Rim/metabolismo , Necrose , Fagócitos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Immunol ; 186(8): 4771-81, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21389252

RESUMO

Cardiolipin (CL), a major phospholipid in bacterial cell walls, is sequestered from the immune system in mammalian mitochondria and is, therefore, a potential danger signal. Based on growing evidence that phospholipids constitute natural ligands for CD1 and that CD1d-restricted T cells recognize phospholipids, we hypothesized that CD1d binds and presents CL and that T cells in the normal immune repertoire respond to CL in a CD1d-restricted manner. We determined the murine CD1d-CL crystal structure at 2.3 Šresolution and established through additional lipid loading experiments that CL, a tetra-acylated phospholipid, binds to murine CD1d with two alkyl chains buried inside the CD1d binding groove and the remaining two exposed into the solvent. We furthermore demonstrate the functional stimulatory activity of CL, showing that splenic and hepatic γδ T cells from healthy mice proliferate in vitro in response to mammalian or bacterial CL in a dose-dependent and CD1d-restricted manner, rapidly secreting the cytokines IFN-γ and RANTES. Finally, we show that hepatic γδ T cells are activated in vivo by CD1d-bearing dendritic cells that have been pulsed with CL, but not phosphatidylcholine. Together, these findings demonstrate that CD1d is able to bind and present CL to a subset of CL-responsive γδ T cells that exist in the spleen and liver of healthy mice and suggest that these cells could play a role in host responses to bacterial lipids and, potentially, self-CL. We propose that CL-responsive γδ T cells play a role in immune surveillance during infection and tissue injury.


Assuntos
Antígenos CD1d/imunologia , Cardiolipinas/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD1d/química , Antígenos CD1d/metabolismo , Sítios de Ligação , Cardiolipinas/química , Cardiolipinas/metabolismo , Proliferação de Células , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Cristalização , Feminino , Citometria de Fluxo , Interferon gama/imunologia , Interferon gama/metabolismo , Fígado/citologia , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Baço/citologia , Baço/imunologia , Baço/metabolismo , Linfócitos T/metabolismo , Difração de Raios X
10.
Res Pract Thromb Haemost ; 7(1): 100041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644653

RESUMO

Background: The significance of antiphospholipid antibodies (aPL) in COVID-19 remains uncertain. Objectives: We determined whether aPL are associated with COVID-19 and/or thrombosis or adverse outcomes during hospitalization for COVID-19. Methods: Symptomatic adults tested for SARS-CoV-2 for clinical reasons (March-July 2020) with either ≥1 positive polymerase chain reaction (COVID-19+) or all negative (non-COVID-19) results were recruited to a biobank collecting plasma, clinical data, and outcomes. We tested baseline plasma samples (days 0-7) of all subjects (and day-30 samples in the COVID-19+ subjects, when available) for aPL (anticardiolipin immunoglobulin [Ig]M/IgG, anti-ß2-glycoprotein I IgM/IgG, antiphosphatidylserine/prothrombin IgM/IgG, and lupus anticoagulant). We compared the baseline prevalence of aPL between the COVID-19+ and non-COVID-19 subjects. Among hospitalized COVID-19+ subjects, multivariable logistic regression was used to evaluate the association of aPL (and their subtypes) with arterial or venous thromboembolic events, acute kidney injury, intensive care unit admission, mechanical ventilation, and death after adjusting for potential confounders. Results: At baseline, 123 of 289 (43%) COVID+ subjects had ≥1 aPL versus 116 of 261 (32%) non-COVID-19 subjects (difference, 10%; 95% CI, 3%-18%). Among 89 COVID+ subjects with repeated samples, aPL persisted on day 30 in 15 of 34 (44%) subjects with baseline aPL positivity, and half of those without aPL at baseline developed one or more new aPL. In hospitalized COVID-19 subjects (n = 241), baseline aPL positivity was associated with acute kidney injury (odds ratio [OR], 1.8; 95% CI, 1.1-3.2) and mechanical ventilation (OR, 3.2; 95% CI, 1.5-6.8) but not death (OR, 1.2; 95% CI, 0.6-2.5). In secondary analyses, medium-to-high titers of anticardiolipin IgG (>40) were associated with thromboembolic events (OR, 7.3; 95% CI, 1.8-30.1). Conclusion: In patients with COVID-19, aPL may help identify an increased risk of thrombosis and other adverse outcomes.

11.
EJHaem ; 4(1): 211-215, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36819151

RESUMO

Although a higher prevalence of antiphospholipid autoantibodies (aPL) has been observed in some cohorts of sickle cell disease (SCD) patients, the clinical risk factors for the development of aPL and its associated complications remain unclear. In a retrospective study of 63 SCD patients, a lower hemoglobin concentration and higher white blood cell count were independently associated with an elevated aPL. SCD patients with elevated aPL had increased pregnancy complications (≥3 miscarriages, preterm delivery, pre-eclampsia) and venous thrombotic events. Our findings suggest that SCD may predispose to the generation of aPL and that aPL itself may contribute to the vasculopathy of SCD. Prospective testing for aPL is warranted in patients with SCD.

12.
J Biol Chem ; 286(49): 42494-42503, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21965665

RESUMO

ß(2)-Glycoprotein I (ß(2)GPI) is an abundant plasma protein that binds to the surface of cells and particles expressing negatively charged lipids, but its physiological role remains unknown. Antibodies to ß(2)GPI are found in patients with anti-phospholipid syndrome, a systemic autoimmune disease associated with vascular thrombosis and pregnancy morbidity. Although it has been suggested that anti-ß(2)GPI antibodies activate endothelial cells and monocytes by signaling through TLR4, it is unclear how anti-ß(2)GPI antibodies and/or ß(2)GPI interact with TLR4. A number of mammalian proteins (termed "endogenous Toll-like receptor (TLR) ligands") have been reported to bind to TLR4, but, in most cases, subsequent studies have shown that LPS interaction with these proteins is responsible for TLR activation. We hypothesized that, like other endogenous TLR ligands, ß(2)GPI interacts specifically with LPS and that this interaction is responsible for apparent TLR4 activation by ß(2)GPI. Here, we show that both LPS and TLR4 are required for ß(2)GPI to bind to and activate macrophages. Untreated ß(2)GPI stimulated TNF-α production in TLR4-sufficient (but not TLR4-deficient) macrophages. In contrast, neither polymyxin B-treated nor delipidated ß(2)GPI stimulated TNF-α production. Furthermore, ß(2)GPI bound to LPS in a specific and dose-dependent manner. Finally, untreated ß(2)GPI bound to the surface of TLR4-sufficient (but not TLR4-deficient) macrophages. Polymyxin B treatment of ß(2)GPI abolished macrophage binding. Our findings suggest a potential new biological activity for ß(2)GPI as a protein that interacts specifically with LPS and point to the need to evaluate newly discovered endogenous TLR ligands for potential interactions with LPS.


Assuntos
Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , beta 2-Glicoproteína I/metabolismo , Animais , Endotoxinas/metabolismo , Feminino , Regulação da Expressão Gênica , Imunidade Inata , Ligantes , Lipídeos/química , Lipopolissacarídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Polimixina B/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Arthritis Rheum ; 63(8): 2416-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21506099

RESUMO

OBJECTIVE: Anti-heat shock protein 60 autoantibodies (anti-Hsp60) are associated with cardiovascular disease and are known to affect endothelial cells in vitro, and we have recently shown that anti-Hsp60 promote thrombosis in a murine model of arterial injury. Based on those findings, we undertook the present study to investigate the hypothesis that the presence of anti-Hsp60, alone or in combination with other thrombogenic risk factors, is associated with an elevated risk of vascular events. METHODS: The study population was derived from 3 ongoing cohort studies: 2 independent systemic lupus erythematosus (SLE) registries and 1 cohort comprising SLE patients and non-SLE patients. Data from a total of 402 participants were captured; 199 of these participants had had confirmed vascular events (arterial vascular events in 102, venous vascular events in 76, and both arterial and venous vascular events in 21). Anti-Hsp60 were detected by enzyme-linked immunoassay, and association with vascular events was assessed by regression analysis. RESULTS: Multiple regression analysis revealed that arterial vascular events were associated with male sex, age, and hypertension. Analyses of the vascular events according to their origin showed an association of anti-Hsp60 with arterial vascular events (odds ratio 2.26 [95% confidence interval 1.13-4.52]), but not with venous vascular events. Anti-Hsp60 increased the risk of arterial vascular events (odds ratio 5.54 [95% confidence interval 1.89-16.25]) in antiphospholipid antibody (aPL)-positive, but not aPL-negative, individuals. CONCLUSION: We demonstrate that anti-Hsp60 are associated with an increased risk of arterial vascular events, but not venous vascular events, in aPL-positive individuals. These data suggest that anti-Hsp60 may serve as a useful biomarker to distinguish risk of arterial and venous vascular events in patients with aPL.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Autoanticorpos/imunologia , Chaperonina 60/imunologia , Doenças Vasculares/imunologia , Anticorpos Antifosfolipídeos/metabolismo , Autoanticorpos/metabolismo , Chaperonina 60/metabolismo , Estudos de Coortes , Feminino , Humanos , Hipertensão/imunologia , Hipertensão/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Fatores de Risco , Doenças Vasculares/metabolismo
14.
Arthritis Res Ther ; 24(1): 23, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027076

RESUMO

BACKGROUND: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). In vivo, ACPAs target peptidyl-citrulline epitopes (cit-) in a variety of proteins (cit-prot-ACPAs) and derived peptides (cit-pept-ACPAs) generated via the peptidylarginine deiminase (PAD) isoenzymes. We aimed to identify a cell line with self-citrullination capacity, to describe its autoantigenic citrullinome, and to test it as a source of autocitrullinated proteins and peptides. METHODS: Human cell lines were screened for cit-proteins by Western blot. PAD isoenzymes were identified by RT-PCR. Autocitrullination of ECV304 was optimized, and the ECV304 autocitrullinomes immunoprecipitated by sera from three RA patients were characterized by mass spectrometry. Cit-pept-ACPAs were detected using anti-CCP2 ELISA and cit-prot-ACPAs, by an auto-cit-prot-ECV304 ELISA. Sera from 177 RA patients, 59 non-RA rheumatic disease patients and 25 non-disease controls were tested. RESULTS: Of the seven cell lines studied, only ECV304 simultaneously overexpressed PAD2 and PAD3 and its extracts reproducibly autocitrullinated self and non-self-proteins. Proteomic analysis of the cit-ECV304 products immunoprecipitated by RA sera, identified novel cit-targets: calreticulin, profilin 1, vinculin, new 14-3-3 protein family members, chaperones, and mitochondrial enzymes. The auto-cit-prot-ECV304 ELISA had a sensitivity of 50% and a specificity of 95% for RA diagnosis. CONCLUSIONS: ECV304 cells overexpress two of the PAD isoenzymes capable of citrullinating self-proteins. These autocitrullinated cells constitute a basic and clinical research tool that enable the detection of cit-prot-ACPAs with high diagnostic specificity and allow the identification of the specific cit-proteins targeted by individual RA sera.


Assuntos
Artrite Reumatoide , Autoanticorpos , Autoantígenos , Citrulina , Humanos , Peptídeos , Proteômica
15.
J Biol Chem ; 285(3): 1829-40, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19910463

RESUMO

During apoptosis, cells acquire new activities that enable them to modulate the fate and function of interacting phagocytes, particularly macrophages (m). Although the best known of these activities is anti-inflammatory, apoptotic targets also influence m survival and proliferation by modulating proximal signaling events, such as MAPK modules and Akt. We asked whether modulation of these same signaling events extends to epithelial cells, a minimally phagocytic cell type. We used BU.MPT cells, a mouse kidney epithelial cell line, as our primary model, but we also evaluated several epithelial cell lines of distinct tissue origins. Like m, mouse kidney epithelial cells recognized apoptotic and necrotic targets through distinct non-competing receptors, albeit with lower binding capacity and markedly reduced phagocytosis. Also, modulation of inflammatory activity and MAPK-dependent signaling by apoptotic and necrotic targets was indistinguishable in kidney epithelial cells and m. In contrast, modulation of Akt-dependent signaling differed dramatically between kidney epithelial cells and m. In kidney epithelial cells, modulation of Akt was linked to target cell recognition, independently of phagocytosis, whereas in m, modulation was linked to phagocytosis. Moreover, recognition of apoptotic and necrotic targets by kidney epithelial cells elicited opposite responses; apoptotic targets inhibited whereas necrotic targets stimulated Akt activity. These data confirm that nonprofessional phagocytes recognize and respond to dying cells, albeit in a manner partially distinct from m. By acting as sentinels of environmental change, apoptotic and necrotic targets may permit neighboring viable cells, especially non-migratory epithelial cells, to monitor and adapt to local stresses.


Assuntos
Apoptose , Células Epiteliais/citologia , Transdução de Sinais , Adaptação Fisiológica , Animais , Linhagem Celular , Sobrevivência Celular , Cricetinae , Homeostase , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Necrose/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico
16.
Immunogenetics ; 63(5): 291-308, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21229240

RESUMO

Macrophages (mϕ) from pre-diseased mice of the major murine inbred models of spontaneous autoimmunity (AI), including multiple lupus-prone strains and the type I diabetes-prone NOD (non-obese diabetic) strain, have identical apoptotic target-dependent abnormalities. This characteristic feature of mϕ from AI-prone mice suggests that abnormal signaling events induced within mϕ following their interaction with apoptotic targets may predispose to AI. Such signaling abnormalities would affect predominantly the processing and presentation of self-antigen (i.e., derived from apoptotic targets), while sparing the processing and presentation of foreign antigen (i.e., derived from non-apoptotic sources). Here, we used DNA microarrays to test the hypothesis that mϕ from AI-prone mice (MRL/MpJ [MRL/+] or MRL/MpJ-Tnfrsf6 ( lpr ) [MRL/lpr]) differentially express multiple genes in comparison to non-AI mϕ (BALB/c), but do so in a largely apoptotic cell-dependent manner. Mϕ were stimulated with lipopolysaccharide, a potent innate stimulus, in the presence or absence of serum (an experimental surrogate for apoptotic targets). In accord with our hypothesis, the number of genes differentially expressed by MRL mϕ was significantly increased in the presence vs. the absence of serum, the apoptotic target surrogate (n = 401 vs. n = 201). Notably, for genes differentially expressed by MRL mϕ in the presence of serum, serum-free culture normalized their expression to a level statistically indistinguishable from that by non-AI mϕ. Comparisons of mϕ from AI-prone NOD and non-AI C57BL/6 mice corroborated these findings. Together, these data support the hypothesis that mϕ from MRL and other AI-prone mice are characterized by a conditional abnormality elicited by serum lipids or apoptotic targets.


Assuntos
Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD , Análise de Sequência com Séries de Oligonucleotídeos
17.
Thromb Haemost ; 101(1): 100-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19132195

RESUMO

Antiphospholipid antibodies (aPL) are associated with vascular events, but the magnitude of this risk, alone, or in combination with other atherogenic and thrombophilic risk factors, remains unclear. A prospective cohort of 415 persons was studied for arterial and venous events (AE and VE) over a median time of 7.4 years. aPL and coagulation abnormalities were measured upon beginning of the study and annually for the first four years. Within the cohort, a nested case-control study was conducted to investigate the role of endothelial and inflammatory markers in predicting new vascular events. Forty-five individuals had new vascular events: 18 occurred during the first year of follow-up. The proportion of event-free survivors at eight years was 90% (95%CI = 87%, 94%) for aPL-negative and 72% (60%, 85%) for aPL-positive individuals, respectively. Predictors for new AE were previous AE (HR = 5.7 [2.7, 12.0]), diabetes (5.6 [2.4, 13.2]), aPL positivity (2.6 ([1.2, 5.9]), and age (1.04 [1.01, 1.07]). New VE were predicted by previous VE (6.1 [1.9, 19.9]), anti-beta2-glycoprotein I (abeta2GPI) positivity (5.8 [1.4, 24.1]), activated protein C resistance (APCR) (4.1 [1.1, 15.1]), and gender (3.7 [1.1, 12.9]). In the nested case-control study, similar predictors were observed for AE, while abnormal APCR (OR = 5.5 [1.1, 26.6]) and elevated von Willebrand factor (vWF) (OR = 5.0 [1.2, 19.8]) best predicted VE. We demonstrate that aPL independently predict new vascular events and discriminate between individuals with and without events in the first two years of follow-up, indicating that aPL are associated with a short-term risk of developing new and recurrent vascular events.


Assuntos
Anticorpos Antifosfolipídeos/sangue , Coagulação Sanguínea , Doenças Vasculares/imunologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Endotélio Vascular/metabolismo , Feminino , Humanos , Mediadores da Inflamação/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Prospectivos , Recidiva , Medição de Risco , Fatores de Risco , Fatores de Tempo , Doenças Vasculares/sangue , Doenças Vasculares/mortalidade
18.
Cell Mol Immunol ; 16(8): 685-693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29572548

RESUMO

Systemic lupus erythematosus is a prototypic model for B-cell epitope spread in autoimmunity. Autoantibodies to numerous molecularly distinct self-antigens emerge in a sequential manner over several years, leading to disease manifestations. Among the earliest autoantibodies to appear are those targeting phospholipid-binding proteins, particularly ß2-glycoprotein I. Notably, mice immunized with ß2-glycoprotein I and lipopolysaccharide develop a strong T cell response to ß2-glycoprotein I that is associated with autoantibody production and renal disease, similar to that seen in human SLE. Here we hypothesized that mice with murine systemic lupus erythematosus, whether induced or spontaneous, should have T cells that recognize ß2-glycoprotein I. We evaluated the response of splenic T cells from mice with induced (C57BL/6 and C3H/HeN) and spontaneous (MRL/lpr) systemic lupus erythematosus to peptides spanning the entire sequence of human ß2GPI. We found that mice with induced and spontaneous systemic lupus erythematosus recognize a common T cell epitope (peptide 31; LYRDTAVFECLPQHAMFG) in domain III of ß2-glycoprotein I. ß2GPI-reactive CD4+ T cells from the two models differed primarily in cytokine production: T cells from mice with induced SLE expressed IFN-γ, while T cells from MRL/lpr mice expressed both IL-17 and IFN-γ, indicating that IL-17-expressing T cells are not necessary for generating a ß2GPI-reactive T cell response. These data suggest that the generation of a ß2-glycoprotein I-reactive T cell response is shared by both induced and spontaneous models of systemic lupus erythematosus and that this T cell response may mediate epitope spread to autoantibodies in both models.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Lúpus Eritematoso Sistêmico/imunologia , beta 2-Glicoproteína I/imunologia , Animais , Autoanticorpos/sangue , Modelos Animais de Doenças , Feminino , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , beta 2-Glicoproteína I/farmacologia
19.
Front Immunol ; 10: 1026, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134086

RESUMO

The mitochondrion supplies energy to the cell and regulates apoptosis. Unlike other mammalian organelles, mitochondria are formed by binary fission and cannot be directly produced by the cell. They contain numerous copies of a compact circular genome that encodes RNA molecules and proteins involved in mitochondrial oxidative phosphorylation. Whereas, mitochondrial DNA (mtDNA) activates the innate immune system if present in the cytosol or the extracellular milieu, it is also the target of circulating autoantibodies in systemic lupus erythematosus (SLE). However, it is not known whether mitochondrial RNA is also recognized by autoantibodies in SLE. In the present study, we evaluated the presence of autoantibodies targeting mitochondrial RNA (AmtRNA) in SLE. We quantified AmtRNA in an inducible model of murine SLE. The AmtRNA were also determined in SLE patients and healthy volunteers. AmtRNA titers were measured in both our induced model of murine SLE and in human SLE, and biostatistical analyses were performed to determine whether the presence and/or levels of AmtRNA were associated with clinical features expressed by SLE patients. Both IgG and IgM classes of AmtRNA were increased in SLE patients (n = 86) compared to healthy controls (n = 30) (p < 0.0001 and p = 0.0493, respectively). AmtRNA IgG levels correlated with anti-mtDNA-IgG titers (rs = 0.54, p < 0.0001) as well as with both IgG and IgM against ß-2-glycoprotein I (anti-ß2GPI; rs = 0.22, p = 0.05), and AmtRNA-IgG antibodies were present at higher levels when patients were positive for autoantibodies to double-stranded-genomic DNA (p < 0.0001). AmtRNA-IgG were able to specifically discriminate SLE patients from healthy controls, and were negatively associated with plaque formation (p = 0.04) and lupus nephritis (p = 0.03). Conversely, AmtRNA-IgM titers correlated with those of anti-ß2GPI-IgM (rs = 0.48, p < 0.0001). AmtRNA-IgM were higher when patients were positive for anticardiolipin antibodies (aCL-IgG: p = 0.01; aCL-IgM: p = 0.002), but AmtRNA-IgM were not associated with any of the clinical manifestations assessed. These findings identify mtRNA as a novel mitochondrial antigen target in SLE, and support the concept that mitochondria may provide an important source of circulating autoantigens in SLE.


Assuntos
Anticorpos Antinucleares/imunologia , Autoanticorpos/imunologia , DNA/imunologia , Lúpus Eritematoso Sistêmico/imunologia , RNA Mitocondrial/imunologia , Animais , Anticorpos Anticardiolipina/sangue , Anticorpos Anticardiolipina/imunologia , Anticorpos Antinucleares/sangue , Autoanticorpos/sangue , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/imunologia
20.
Sci Rep ; 9(1): 4530, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872710

RESUMO

Mitochondria are organelles that govern energy supply and control cell death. Mitochondria also express bacterial features, such as the presence of inner membrane cardiolipin and a circular genome rich in hypomethylated CpG motifs. While mitochondrial extrusion by damaged organs or activated cells is thought to trigger innate immunity, it is unclear whether extracellular mitochondria also stimulate an adaptive immune response. We describe the development of novel assays to detect autoantibodies specific to two distinct components of the mitochondrion: the mitochondrial outer membrane and mitochondrial DNA. Antibodies to these two mitochondrial constituents were increased in both human and murine systemic lupus erythematosus (SLE), compared to controls, and were present at higher levels than in patients with antiphospholipid syndrome or primary biliary cirrhosis. In both bi- and multi-variate regression models, antibodies to mitochondrial DNA, but not whole mitochondria, were associated with increased anti-dsDNA antibodies and lupus nephritis. This study describes new and optimized methods for the assessment of anti-mitochondrial antibodies, and demonstrates their presence in both human and murine SLE. These findings suggest that different mitochondrial components are immunogenic in SLE, and support the concept that extracellular mitochondria may provide an important source of circulating autoantigens in SLE.


Assuntos
Autoanticorpos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Mitocôndrias/imunologia , Adulto , Idoso , Animais , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Autoanticorpos/sangue , DNA Mitocondrial/imunologia , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/imunologia , Razão de Chances , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA