Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Brain Mapp ; 41(5): 1296-1308, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778265

RESUMO

In the present work, we investigated the relationship of oscillatory sensorimotor brain activity to motor recovery. The neurophysiological data of 30 chronic stroke patients with severe upper-limb paralysis are the basis of the observational study presented here. These patients underwent an intervention including movement training based on combined brain-machine interfaces and physiotherapy of several weeks recorded in a double-blinded randomized clinical trial. We analyzed the alpha oscillations over the motor cortex of 22 of these patients employing multilevel linear predictive modeling. We identified a significant correlation between the evolution of the alpha desynchronization during rehabilitative intervention and clinical improvement. Moreover, we observed that the initial alpha desynchronization conditions its modulation during intervention: Patients showing a strong alpha desynchronization at the beginning of the training improved if they increased their alpha desynchronization. Patients showing a small alpha desynchronization at initial training stages improved if they decreased it further on both hemispheres. In all patients, a progressive shift of desynchronization toward the ipsilesional hemisphere correlates significantly with clinical improvement regardless of lesion location. The results indicate that initial alpha desynchronization might be key for stratification of patients undergoing BMI interventions and that its interhemispheric balance plays an important role in motor recovery.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ritmo alfa , Biomarcadores , Interfaces Cérebro-Computador , Método Duplo-Cego , Sincronização de Fases em Eletroencefalografia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Paralisia/fisiopatologia , Modalidades de Fisioterapia , Valor Preditivo dos Testes , Adulto Jovem
2.
Front Bioeng Biotechnol ; 12: 1330330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681960

RESUMO

Introduction: The primary constraint of non-invasive brain-machine interfaces (BMIs) in stroke rehabilitation lies in the poor spatial resolution of motor intention related neural activity capture. To address this limitation, hybrid brain-muscle-machine interfaces (hBMIs) have been suggested as superior alternatives. These hybrid interfaces incorporate supplementary input data from muscle signals to enhance the accuracy, smoothness and dexterity of rehabilitation device control. Nevertheless, determining the distribution of control between the brain and muscles is a complex task, particularly when applied to exoskeletons with multiple degrees of freedom (DoFs). Here we present a feasibility, usability and functionality study of a bio-inspired hybrid brain-muscle machine interface to continuously control an upper limb exoskeleton with 7 DoFs. Methods: The system implements a hierarchical control strategy that follows the biologically natural motor command pathway from the brain to the muscles. Additionally, it employs an innovative mirror myoelectric decoder, offering patients a reference model to assist them in relearning healthy muscle activation patterns during training. Furthermore, the multi-DoF exoskeleton enables the practice of coordinated arm and hand movements, which may facilitate the early use of the affected arm in daily life activities. In this pilot trial six chronic and severely paralyzed patients controlled the multi-DoF exoskeleton using their brain and muscle activity. The intervention consisted of 2 weeks of hBMI training of functional tasks with the system followed by physiotherapy. Patients' feedback was collected during and after the trial by means of several feedback questionnaires. Assessment sessions comprised clinical scales and neurophysiological measurements, conducted prior to, immediately following the intervention, and at a 2-week follow-up. Results: Patients' feedback indicates a great adoption of the technology and their confidence in its rehabilitation potential. Half of the patients showed improvements in their arm function and 83% improved their hand function. Furthermore, we found improved patterns of muscle activation as well as increased motor evoked potentials after the intervention. Discussion: This underscores the significant potential of bio-inspired interfaces that engage the entire nervous system, spanning from the brain to the muscles, for the rehabilitation of stroke patients, even those who are severely paralyzed and in the chronic phase.

3.
Front Hum Neurosci ; 17: 1070404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789905

RESUMO

More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1664-1667, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060204

RESUMO

In the past few years, innovative upper-limb rehabilitation methods have been proposed for chronic stroke patients. These methods aim at functional motor rehabilitation using Brain-machine interfaces to constitute an alternate pathway from the brain to the muscles. Even in patients with absence of residual finger movements, recovery could be achieved. The extent to which these interventions are affected by individual lesion topology is yet to be understood. In this study EEG was measured in 30 chronic stroke patients during movement attempts of the paretic arm. We show that the magnitude of the event-related desynchronization was smaller in patients presenting lesions with involvement of the motor cortex. This could have important implications on the design of new rehabilitation schemes for these patients, which might benefit from carefully tailored interventions.


Assuntos
Acidente Vascular Cerebral , Encéfalo , Interfaces Cérebro-Computador , Humanos , Córtex Motor , Movimento , Reabilitação do Acidente Vascular Cerebral
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3065-3068, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060545

RESUMO

Recent studies have demonstrated the efficacy of brain-machine interfaces (BMI) for motor rehabilitation after stroke, especially for those patients with severe paralysis. However, a cerebro-vascular accident can affect the brain in many different manners, and lesions in diverse areas, even from significantly different volumes, can lead to similar or equal motor deficits. The location of the insult influences the way the brain activates when moving or attempting to move a paralyzed limb. Since the essence of a rehabilitative BMI is to precisely decode motor commands from the brain, it is crucial to characterize how lesion location affects the measured signals and if and how it influences BMI performance. This paper compares the performances of an electroencephalography (EEG)-based movement intention decoder in two groups of severely paralyzed chronic stroke patients: 14 with subcortical lesions and 14 with mixed (i.e., cortical and subcortical) lesions. We show that the lesion location influences the performance of the BMI when decoding the movement attempts of the paretic arm. The obtained results underline the need for further developments for a better individualization of BMI-based rehabilitative therapies for stroke patients.


Assuntos
Acidente Vascular Cerebral , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Intenção , Córtex Motor , Movimento
6.
Front Behav Neurosci ; 9: 269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539089

RESUMO

While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to "match" their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA