Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663084

RESUMO

Permafrost regions play an important role in global carbon and nitrogen cycling, storing enormous amounts of organic carbon and preserving a delicate balance of nutrient dynamics. However, the increasing frequency and severity of wildfires in these regions pose significant challenges to the stability of these ecosystems. This review examines the effects of fire on chemical, biological, and physical properties of permafrost regions. The physical, chemical, and pedological properties of frozen soil are impacted by fires, leading to changes in soil structure, porosity, and hydrological functioning. The combustion of organic matter during fires releases carbon and nitrogen, contributing to greenhouse gas emissions and nutrient loss. Understanding the interactions between fire severity, ecosystem processes, and the implications for permafrost regions is crucial for predicting the impacts of wildfires and developing effective strategies for ecosystem protection and agricultural productivity in frozen soils. By synthesizing available knowledge and research findings, this review enhances our understanding of fire severity's implications for permafrost ecosystems and offers insights into effective fire management strategies.


Assuntos
Ecossistema , Pergelissolo , Solo , Incêndios Florestais , Solo/química , Incêndios , Nitrogênio/análise , Carbono/análise
2.
Biology (Basel) ; 13(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39056675

RESUMO

Oncomelania hupensis is the exclusive intermediary host of Schistosoma japonicum in China. The alteration of O. hupensis habitat and population distribution directly affects the safety of millions of individuals residing in the Yangtze River Economic Belt (YREB) and the ecological stability of Yangtze River Basin. Therefore, it is crucial to analyze the influence of climate change on the distribution of O. hupensis in order to achieve accurate control over its population. This study utilized the MaxEnt model to forecast possible snail habitats by utilizing snail distribution data obtained from historical literature. The following outcomes were achieved: The primary ecological factors influencing the distribution of O. hupensis are elevation, minimum temperature of the coldest month, and precipitation of wettest month. Furthermore, future climate scenarios indicate a decrease in the distribution area and a northward shift of the distribution center for O. hupensis; specifically, those in the upstream will move northeast, while those in the midstream and downstream will move northwest. These changes in suitable habitat area, the average migration distance of distribution centers across different climate scenarios, time periods, and sub-basins within the YREB, result in uncertainty. This study offers theoretical justification for the prevention and control of O. hupensis along the YREB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA