Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 407(8): 2673-88, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19217146

RESUMO

The spectral and temporal variations of aerosol optical depths (AOD) observed over Anantapur (a semi-arid region) located in the Southern part of India are investigated by analyzing the data obtained from a Multiwavelength Solar Radiometer (MWR) during January 2005-December 2006 (a total of 404 clear-sky observations) using the Langley technique. In this paper, we highlighted the studies on monthly, seasonal and spectral variations of aerosol optical depth and their implications. The results showed seasonal variation with higher values during pre-monsoon (March-May) and lower in the monsoon (June-November) season at all wavelengths. The pre-monsoon increase is found to be due to the high wind speed producing larger amounts of wind-driven dust particles. The post-monsoon (December-February) AOD values decrease more at higher wavelengths, indicating a general reduction in the number of bigger particles. Also during the post-monsoon, direction of winds in association with high or low pressure weather systems and the air brings more aerosol content to the region which is surrounded by a number of cement plants, lime kilns, slab polishing and brick making units. The quantity of AOD values in pre-monsoon is higher (low during post-monsoon) for wavelength, such as shortwave infrared (SWIR) or near infrared (NIR), which shows that coarse particles contribute more compare with the sub-micron particles. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from approximately 70% to 30% from post-monsoon to pre-monsoon. Coarse mode particle loading observed to be high during pre-monsoon and accumulation mode particles observed to be high during post-monsoon. The backward trajectories at three representative altitudes with source point at the observing site indicate a possible transport from the outflow regions into Bay of Bengal, southern peninsular India and Arabian Sea. The temporal variations of AOD, Angstrom wavelength exponent and precipitable water content over Anantapur have also been compared with those reported from selected locations in India.


Assuntos
Aerossóis/química , Monitoramento Ambiental , Poluição Ambiental/análise , Atmosfera/química , Clima , Geografia , Índia , Fenômenos Ópticos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA