RESUMO
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Assuntos
Simulação de Dinâmica Molecular , Mutação , Engenharia de Proteínas , Teoria QuânticaRESUMO
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Assuntos
Enzimas/química , Enzimas/metabolismo , Catálise , Estrutura MolecularRESUMO
Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.
Assuntos
Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Aprendizado de Máquina , Mutação , Dobramento de Proteína , Multimerização Proteica , Rhodococcus/enzimologia , Epóxido Hidrolases/genética , Limoneno/química , Limoneno/metabolismo , Simulação de Dinâmica Molecular , Engenharia de ProteínasRESUMO
The term B-factor, sometimes called the Debye-Waller factor, temperature factor, or atomic displacement parameter, is used in protein crystallography to describe the attenuation of X-ray or neutron scattering caused by thermal motion. This review begins with analyses of early protein studies which suggested that B-factors, available from the Protein Data Bank, can be used to identify the flexibility of atoms, side chains, or even whole regions. This requires a technique for obtaining normalized B-factors. Since then the exploitation of B-factors has been extensively elaborated and applied in a variety of studies with quite different goals, all having in common the identification and interpretation of rigidity, flexibility, and/or internal motion which are crucial in enzymes and in proteins in general. Importantly, this review includes a discussion of limitations and possible pitfalls when using B-factors. A second research area, which likewise exploits B-factors, is also reviewed, namely, the development of the so-called B-FIT-directed evolution method for increasing the thermostability of enzymes as catalysts in organic chemistry and biotechnology. In both research areas, a maximum of structural and mechanistic insights is gained when B-factor analyses are combined with other experimental and computational techniques.
Assuntos
Proteínas/química , Humanos , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Estabilidade ProteicaRESUMO
While the mechanism of the P450-catalyzed oxidative hydroxylation of organic compounds has been studied in detail for many years, less is known about sulfoxidation. Depending upon the structure of the respective substrate, heme-FeâO (Cpd I), heme-Fe(III)-OOH (Cpd 0), and heme-Fe(III)-H2O2 (protonated Cpd 0) have been proposed as reactive intermediates. In the present study, we consider the transformation of isosteric substrates via sulfoxidation and oxidative hydroxylation, respectively, catalyzed by regio- and enantioselective mutants of P450-BM3 which were constructed by directed evolution. 1-Thiochromanone and 1-tetralone were used as the isosteric substrates because, unlike previous studies involving fully flexible compounds such as thia-fatty acids and fatty acids, respectively, these compounds are rigid and cannot occur in a multitude of different conformations and binding modes in the large P450-BM3 binding pocket. The experimental results comprising activity and regio- and enantioselectivity, flanked by molecular dynamics computations within a time scale of 300 ns and QM/MM calculations of transition-state energies, unequivocally show that heme-FeâO (Cpd I) is the common catalytically active intermediate in both sulfoxidation and oxidative hydroxylation.
RESUMO
Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000-2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts in organic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to be considered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.
Assuntos
Complexos de Coordenação/química , Enzimas/química , Metaloproteínas/química , Elementos de Transição/química , Catálise , Evolução Molecular Direcionada/métodos , Enzimas/genética , Metaloproteínas/genéticaRESUMO
Directed evolution of stereo-, regio-, and chemoselective enzymes constitutes a unique way to generate biocatalysts for synthetically interesting transformations in organic chemistry and biotechnology. In order for this protein engineering technique to be efficient, fast, and reliable, and also of relevance to synthetic organic chemistry, methodology development was and still is necessary. Following a description of early key contributions, this review focuses on recent developments. It includes optimization of molecular biological methods for gene mutagenesis and the design of efficient strategies for their application, resulting in notable reduction of the screening effort (bottleneck of directed evolution). When aiming for laboratory evolution of selectivity and activity, second-generation versions of Combinatorial Active-Site Saturation Test (CAST) and Iterative Saturation Mutagenesis (ISM), both involving saturation mutagenesis (SM) at sites lining the binding pocket, have emerged as preferred approaches, aided by in silico methods such as machine learning. The recently proposed Focused Rational Iterative Site-specific Mutagenesis (FRISM) constitutes a fusion of rational design and directed evolution. On-chip solid-phase chemical gene synthesis for rapid library construction enhances library quality notably by eliminating undesired amino acid bias, the future of directed evolution?
Assuntos
Evolução Molecular Direcionada/métodos , Enzimas/genética , Bactérias/enzimologia , Biocatálise , Enzimas/química , Fungos/enzimologia , Aprendizado de Máquina , Mutagênese Sítio-Dirigida , Compostos Orgânicos/síntese químicaRESUMO
Steroidal C7ß alcohols and their respective esters have shown significant promise as neuroprotective and anti-inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C-H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450-BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and ß stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil-Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high-resolution X-ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio- and stereoselectivity.
Assuntos
Sistema Enzimático do Citocromo P-450/química , Mutação , Esteroides/química , Sistema Enzimático do Citocromo P-450/genética , Ligação de Hidrogênio , Hidroxilação , Simulação de Dinâmica Molecular , Oxirredução , Estereoisomerismo , Especificidade por SubstratoRESUMO
A unique P450 monooxygenase-peroxygenase mutual benefit system was designed as the core element in the construction of a biocatalytic cascade reaction sequence leading from 3-phenyl propionic acid to ( R)-phenyl glycol. In this system, P450 monooxygenase (P450-BM3) and P450 peroxygenase (OleTJE) not only function as catalysts for the crucial initial reactions, they also ensure an internal in situ H2O2 recycle mechanism that avoids its accumulation and thus prevents possible toxic effects. By directed evolution of P450-BM3 as the catalyst in the enantioselective epoxidation of the styrene-intermediate, formed from 3-phenyl propionic acid, and the epoxide hydrolase ANEH for final hydrolytic ring opening, ( R)-phenyl glycol and 9 derivatives thereof were synthesized from the respective carboxylic acids in one-pot processes with high enantioselectivity.
Assuntos
Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Biocatálise , Propionatos/química , Propionatos/metabolismoRESUMO
Enzymatic stereodivergent synthesis to access all possible product stereoisomers bearing multiple stereocenters is relatively undeveloped, although enzymes are being increasingly used in both academic and industrial areas. When two stereocenters and thus four stereoisomeric products are involved, obtaining stereodivergent enzyme mutants for individually accessing all four stereoisomers would be ideal. Although significant success has been achieved in directed evolution of enzymes in general, stereodivergent engineering of one enzyme into four highly stereocomplementary variants for obtaining the full complement of stereoisomers bearing multiple stereocenters remains a challenge. Using Candida antarctica lipase B (CALB) as a model, we report the protein engineering of this enzyme into four highly stereocomplementary variants needed for obtaining all four stereoisomers in transesterification reactions between racemic acids and racemic alcohols in organic solvents. By generating and screening less than 25 variants of each isomer, we achieved >90% selectivity for all of the four possible stereoisomers in the model reaction. This difficult feat was accomplished by developing a strategy dubbed "focused rational iterative site-specific mutagenesis" (FRISM) at sites lining the enzyme's binding pocket. The accumulation of single mutations by iterative site-specific mutagenesis using a restricted set of rationally chosen amino acids allows the formation of ultrasmall mutant libraries requiring minimal screening for stereoselectivity. The crystal structure of all stereodivergent CALB variants, flanked by MD simulations, uncovered the source of selectivity.
Assuntos
Ésteres/química , Ésteres/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Engenharia de Proteínas , Proteínas Fúngicas/química , Lipase/química , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , EstereoisomerismoRESUMO
Chiral arylpropanols are valuable components in important pharmaceuticals and fragrances, which is the motivation for previous attempts to prepare these building blocks enantioselectively in asymmetric processes using either enzymes or transition metal catalysts. Thus far, enzymes used in kinetic resolution proved to be best, but several problems prevented ecologically and economically viable processes from being developed. In the present study, directed evolution was applied to the thermostable alcohol dehydrogenase TbSADH in the successful quest to obtain mutants that are effective in the dynamic reductive kinetic resolution (DYRKR) of racemic arylpropanals. Using rac-2-phenyl-1-propanal in a model reaction, (S)- and (R)-selective mutants were evolved which catalyzed DYRKR of this racemic substrate with formation of the respective (S)- and (R)-alcohols in essentially enantiomerically pure form. This was achieved on the basis of an unconventional form of iterative saturation mutagenesis (ISM) at randomization sites lining the binding pocket using a reduced amino acid alphabet. The best mutants were also effective in the DYRKR of several other structurally related racemic aldehydes.
Assuntos
Álcool Desidrogenase/metabolismo , Propanóis/metabolismo , Temperatura , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Simulação de Acoplamento Molecular , Estrutura Molecular , Propanóis/química , Estabilidade Proteica , EstereoisomerismoRESUMO
Arbutin (also called ß-arbutin) is a natural product occurring in the leaves of a variety of different plants, the bearberries of the Ericaceae and Saxifragaceae families being prominent examples. It is a ß-glucoside derived from hydroquinone (HQ; 1,4-dihydroxybenzene). Arbutin has been identified in traditional Chinese folk medicines as having, inter alia, anti-microbial, anti-oxidant, and anti-inflammatory properties that useful in the treatment of different ailments including urinary diseases. Today, it is also used worldwide for the treatment of skin ailments by way of depigmenting, which means that arbutin is a component of many products in the cosmetics and healthcare industries. It is also relevant in the food industry. Hundreds of publications have appeared describing the isolation, structure determination, toxicology, synthesis, and biological properties of arbutin as well as the molecular mechanism of melanogenesis (tyrosinase inhibition). This review covers the most important aspects with special emphasis on the chemical and biocatalytic methods for the production of arbutin.
Assuntos
Arbutina/química , Arbutina/farmacologia , Biocatálise , Arbutina/biossíntese , Arbutina/síntese química , Estereoisomerismo , Especificidade por SubstratoRESUMO
Hydroquinone (HQ) is produced commercially from benzene by multi-step Hock-type processes with equivalent amounts of acetone as side-product. We describe an efficient biocatalytic alternative using the cytochromeâ P450-BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi-rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one-pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450-BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti-inflammatory and anti-bacterial activities.
Assuntos
Benzeno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroquinonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Hidroxilação , Modelos Moleculares , Oxirredução , Engenharia de Proteínas , Rauwolfia/genética , Rauwolfia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Dimeric disulfide-linked peptides are formed by the regioselective oxidative folding of thiol precursors containing the CX3CX2CX3C tetracysteine motif. Here, we investigate the general applicability of this peptide as a dimerization motif for different proteins. By recombinant DNA technology, the peptide CHWECRGCRLVC was loaded with proteins, and functional homodimers were obtained upon oxidative folding. Attached to the N-terminus of the dodecapeptide, the prokaryotic enzyme limonene epoxide hydrolase (LEH) completely forms a covalent antiparallel dimer. In a diatom expression system, the monoclonal antibody CL4 mAb is released in its functional form when its natural CPPC central parallel hinge is exchanged for the designed tetra-Cys hinge motif. To improve our understanding of the regioselectivity of tetra-disulfide formation, we provoked the formation of heterodimeric hinge peptides by mixing two different tetra-Cys peptides and characterizing the heterodimer by mass spectrometry and nuclear magnetic resonance spectroscopy.
Assuntos
Cisteína/análogos & derivados , Oligopeptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Dissulfetos/química , Hidrolases/química , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Proteínas Recombinantes/químicaRESUMO
Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.
Assuntos
Biocatálise , Evolução Molecular Direcionada , Cinética , Engenharia de ProteínasRESUMO
Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.
Assuntos
Biocatálise , Cicloexenos/metabolismo , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Terpenos/metabolismo , Epóxido Hidrolases/genética , Limoneno , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Mutantes/genética , Teoria Quântica , EstereoisomerismoRESUMO
Directed evolution of stereo- and regioselective enzymes as catalysts in organic chemistry and biotechnology constitutes a complementary alternative to selective transition-metal catalysts and organocatalysts. Saturation mutagenesis at sites lining the binding pocket has emerged as a key method in this endeavor, but it suffers from amino acid bias, which reduces the quality of the library at the DNA level and, thus, at the protein level. Chemical solid-phase gene synthesis for library construction offers a solution to this fundamental problem, and the Sloning and Twist platforms are two possible options. This concept article analyzes these approaches and compares them to traditional PCR-based saturation mutagenesis; the superior commercial Twist technique shows almost no bias.
Assuntos
Biocatálise , Clonagem Molecular/métodos , DNA/genética , Evolução Molecular Direcionada/métodos , Enzimas/genética , Técnicas de Síntese em Fase Sólida/métodos , Viés , Sítios de Ligação , Biblioteca Gênica , Engenharia Genética , Estrutura Molecular , Mutagênese , Reação em Cadeia da Polimerase/métodosRESUMO
A recent directed-evolution study by Schwaneberg and co-workers comparing the widely used iterative saturation mutagenesis (ISM) with the OmniChange version of saturation mutagenesis (SM) prompts us to point out some flaws in the conclusions presented therein. Most importantly, ISM is a semirational strategy in directed evolution that is independent of the particular type of SM that the experimenter may choose; this means that OmniChange should not be compared with ISM. When aiming to improve enzyme selectivity or activity by the ISM strategy, the state-of-the-art calls for SM at randomization sites lining the enzyme binding pocket as part of the combinatorial active-site saturation test (CAST). Our recent studies focusing on the refinement of CAST/ISM have shown that this approach works best when using multiresidue randomization sites as opposed to single-residue sites owing to the possibility of cooperative mutational effects. This advance was not considered by Schwaneberg and co-workers, thus leading to questionable conclusions when pitching CAST/ISM against OmniChange.
Assuntos
Evolução Molecular Direcionada , Mutagênese , Mutagênese Sítio-Dirigida , MutaçãoRESUMO
Directed evolution of stereo- or regioselective enzymes as catalysts in asymmetric transformations is of particular interest in organic synthesis. Upon evolving these biocatalysts, screening is the bottleneck. To beat the numbers problem most effectively, methods and strategies for building "small but smart" mutant libraries have been developed. Herein, we compared two different strategies regarding the application of triple-code saturation mutagenesis (TCSM) at multiresidue sites of the Thermoanaerobacter brockii alcohol dehydrogenase by using distinct reduced amino-acid alphabets. By using the synthetically difficult-to-reduce prochiral ketone tetrahydrofuran-3-one as a substrate, highly R- and S-selective variants were obtained (92-99 % ee) with minimal screening. The origin of stereoselectivity was provided by molecular dynamics analyses, which is discussed in terms of the Bürgi-Dunitz trajectory.
Assuntos
Álcool Desidrogenase/genética , Evolução Molecular Direcionada , Mutagênese , Thermoanaerobacter/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Biocatálise , Furanos/química , Furanos/metabolismo , Simulação de Dinâmica Molecular , Estereoisomerismo , Especificidade por SubstratoRESUMO
Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution.