Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(24): 5675-5687, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730312

RESUMO

Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by marine dinoflagellates that are responsible for paralytic shellfish poisoning (PSP) in humans. This work highlights our ongoing efforts to develop quantitative methods for PSTs using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). Compared with the commonly used method of liquid chromatography with post-column oxidation and fluorescence detection (LC-ox-FLD), HILIC-MS/MS has the potential of being more robust, sensitive and straightforward to operate, and provides unequivocal confirmation of toxin identity. The main driving force for the present work was the need for a complementary method to LC-ox-FLD to assign values to shellfish tissue matrix reference materials for PSTs. Method parameters that were optimized included LC mobile and stationary phases, electrospray ionization (ESI) conditions, and MS/MS detection parameters. The developed method has been used in the detection and identification of a wide range of PSTs including less common analogues and metabolites in a range of shellfish and algal samples. We have assessed the matrix effects of shellfish samples and have evaluated dilution, standard addition and matrix matched calibration as means of mitigating them. Validation on one LC-MS/MS system for nine common PST analogues (GTX1-4, dcGTX2&3, STX, NEO, and dcSTX) was completed using standard addition. The method was then transferred to a more sensitive LC-MS/MS system, expanded to include five more PSTs (C1&2, dcNEO and GTX5&6) and validated using matrix matched calibration. Limits of detection of the validated method ranged between 6 and 280 nmol/kg tissue using standard addition in extracts of blue mussels, with recoveries between 92 and 108%. Finally, this method was used in combination with the AOAC Official Method based on LC-ox-FLD to measure PSTs in a new mussel tissue matrix reference material.


Assuntos
Bivalves/química , Cromatografia Líquida/métodos , Toxinas Marinhas/análise , Frutos do Mar/análise , Espectrometria de Massas em Tandem/métodos , Animais , Dinoflagellida/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Intoxicação por Frutos do Mar/etiologia
2.
Anal Bioanal Chem ; 407(11): 2985-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25335820

RESUMO

Azaspiracids (AZAs) are lipophilic biotoxins produced by marine algae that can contaminate shellfish and cause human illness. The European Union (EU) regulates the level of AZAs in shellfish destined for the commercial market, with liquid chromatography-mass spectrometry (LC-MS) being used as the official reference method for regulatory analysis. Certified reference materials (CRMs) are essential tools for the development, validation, and quality control of LC-MS methods. This paper describes the work that went into the planning, preparation, characterization, and certification of CRM-AZA-Mus, a tissue matrix CRM, which was prepared as a wet homogenate from mussels (Mytilus edulis) naturally contaminated with AZAs. The homogeneity and stability of CRM-AZA-Mus were evaluated, and the CRM was found to be fit for purpose. Extraction and LC-MS/MS methods were developed to accurately certify the concentrations of AZA1 (1.16 mg/kg), AZA2 (0.27 mg/kg), and AZA3 (0.21 mg/kg) in the CRM. Quantitation methods based on standard addition and matrix-matched calibration were used to compensate for the matrix effects in LC-MS/MS. Other toxins present in this CRM at lower levels were also measured with information values reported for okadaic acid, dinophysistoxin-2, yessotoxin, and several spirolides.


Assuntos
Toxinas Marinhas/análise , Mytilus edulis/química , Compostos de Espiro/análise , Animais , Calibragem , Cromatografia Líquida/métodos , Toxinas Marinhas/normas , Venenos de Moluscos , Ácido Okadáico/análise , Oxocinas/análise , Piranos/análise , Padrões de Referência , Compostos de Espiro/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas
3.
J AOAC Int ; 99(5): 1163-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27546874

RESUMO

Okadaic acid (OA) and its analogs, dinophysistoxins-1 (DTX1) and -2 (DTX2) are lipophilic biotoxins produced by marine algae that can accumulate in shellfish and cause the human illness known as diarrhetic shellfish poisoning (DSP). Regulatory testing of shellfish is required to protect consumers and the seafood industry. Certified reference materials (CRMs) are essential for the development, validation, and quality control of analytical methods, and thus play an important role in toxin monitoring. This paper summarizes work on research and development of shellfish tissue reference materials for OA and DTXs. Preliminary work established the appropriate conditions for production of shellfish tissue CRMs for OA and DTXs. Source materials, including naturally incurred shellfish tissue and cultured algae, were screened for their DSP toxins. This preliminary work informed planning and production of a wet mussel (Mytilus edulis) tissue homogenate matrix CRM. The homogeneity and stability of the CRM were evaluated and found to be fit-for-purpose. Extraction and LC-tandem MS methods were developed to accurately certify the concentrations of OA, DTX1, and DTX2 using a combination of standard addition and matrix-matched calibration to compensate for matrix effects in electrospray ionization. The concentration of domoic acid was also certified. Uncertainties were assigned following standards and guidelines from the International Organization for Standardization. The presence of other toxins in the CRM was also assessed and information values are reported for OA and DTX acyl esters.


Assuntos
Diarreia/complicações , Toxinas Marinhas/análise , Ácido Okadáico/análise , Piranos/análise , Intoxicação por Frutos do Mar/complicações , Animais , Calibragem , Cromatografia Líquida/normas , Humanos , Conformação Molecular , Padrões de Referência , Frutos do Mar , Espectrometria de Massas em Tandem/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA