RESUMO
Single-cell technologies have recently expanded the possibilities for researchers to gain, at an unprecedented resolution level, knowledge about tissue composition, cell complexity, and heterogeneity. Moreover, the integration of data coming from different technologies and sources also offers, for the first time, the possibility to draw a holistic portrait of how cells behave to sustain tissue physiology during the human lifespan and disease. Here, we interrogated and integrated publicly available single-cell RNAseq data to advance the understanding of how macrophages, fibro/adipogenic progenitors, and other cell types establish gene regulatory networks and communicate with each other in the muscle tissue. We identified altered gene signatures and signaling pathways associated with the dystrophic condition, including an enhanced Spp1-Cd44 signaling in dystrophic macrophages. We shed light on the differences among dystrophic muscle aging, considering wild type, mdx, and more severe conditions as in the case of the mdx-2d model. Contextually, we provided details on existing communication relations between muscle niche cell populations, highlighting increased interactions and distinct signaling events that these cells stablish in the dystrophic microenvironment. We believe our findings can help scientists to formulate and test new hypotheses by moving towards a more complete understanding of muscle regeneration and immune system biology.
Assuntos
Macrófagos , Músculo Esquelético , Análise de Célula Única , Animais , Macrófagos/metabolismo , Macrófagos/citologia , Análise de Célula Única/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Camundongos , Adipogenia/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Camundongos Endogâmicos mdx , Transdução de Sinais , Redes Reguladoras de GenesRESUMO
Degradation of the endoplasmic reticulum (ER) via selective autophagy (ER-phagy) is vital for cellular homeostasis. We identify FAM134A/RETREG2 and FAM134C/RETREG3 as ER-phagy receptors, which predominantly exist in an inactive state under basal conditions. Upon autophagy induction and ER stress signal, they can induce significant ER fragmentation and subsequent lysosomal degradation. FAM134A, FAM134B/RETREG1, and FAM134C are essential for maintaining ER morphology in a LC3-interacting region (LIR)-dependent manner. Overexpression of any FAM134 paralogue has the capacity to significantly augment the general ER-phagy flux upon starvation or ER-stress. Global proteomic analysis of FAM134 overexpressing and knockout cell lines reveals several protein clusters that are distinctly regulated by each of the FAM134 paralogues as well as a cluster of commonly regulated ER-resident proteins. Utilizing pro-Collagen I, as a shared ER-phagy substrate, we observe that FAM134A acts in a LIR-independent manner and compensates for the loss of FAM134B and FAM134C, respectively. FAM134C instead is unable to compensate for the loss of its paralogues. Taken together, our data show that FAM134 paralogues contribute to common and unique ER-phagy pathways.
Assuntos
Proteínas de Membrana , Proteômica , Autofagia/genética , Colágeno , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Controle de QualidadeRESUMO
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Assuntos
Autofagossomos/imunologia , Infecções Bacterianas/imunologia , Retículo Endoplasmático/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macroautofagia/imunologia , Viroses/imunologia , Autofagossomos/metabolismo , Bactérias/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/microbiologia , Retículo Endoplasmático/virologia , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Homeostase/genética , Homeostase/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Lisossomos/imunologia , Lisossomos/metabolismo , Macroautofagia/genética , Viroses/genética , Viroses/virologia , Vírus/imunologiaRESUMO
Macrophages and autophagy are intricately linked, both playing vital roles in maintaining homeostasis and responding to disease. Macrophages, known for their 'eating' function, rely on a sophisticated digestion system to process a variety of targets, from apoptotic cells to pathogens. The connection between macrophages and autophagy is established early in their development, influencing both differentiation and mature functions. Autophagy regulates essential immune functions, such as inflammation control, pathogen clearance, and antigen presentation, linking innate and adaptive immunity. Moreover, it modulates cytokine production, ensuring a balanced inflammatory response that prevents excessive tissue damage. Autophagy also plays a critical role in macrophage polarization, influencing their shift between pro-inflammatory and anti-inflammatory states. This review explores the role of autophagy in macrophages, emphasizing its impact across various tissues and pathological conditions, and detailing the cellular and molecular mechanisms by which autophagy shapes macrophage function.
RESUMO
In human dystrophies, progressive muscle wasting is exacerbated by ectopic deposition of fat and fibrous tissue originating from fibro/adipogenic progenitors (FAPs). In degenerating muscles, the ability of these cells to promote successful healing is attenuated, and FAPs aberrantly expand and differentiate into adipocytes and fibroblasts. Thus, arresting the fibro/adipogenic fate of FAPs, without affecting their physiological role, represents a valuable therapeutic strategy for patients affected by muscle diseases. Here, using a panel of adipose progenitor cells, including human-derived FAPs, coupled with pharmacological perturbations and proteome profiling, we report that LY2090314 interferes with a genuine adipogenic program acting as WNT surrogate for the stabilization of a competent ß-catenin transcriptional complex. To predict the beneficial impact of LY2090314 in limiting ectopic deposition of fat in human muscles, we combined a poly-ethylene-glycol-fibrinogen biomimetic matrix with these progenitor cells to create a miniaturized 3D model of adipogenesis. Using this scalable system, we demonstrated that a two-digit nanomolar dose of this compound effectively represses adipogenesis at higher 3D scale, thus indicating the potential for LY2090314 to limit FAP-derived fat infiltrates in dystrophic muscles.
Assuntos
Adipogenia , Distrofias Musculares , Humanos , Músculos , Células-Tronco , Músculo Esquelético , Diferenciação CelularRESUMO
BACKGROUND: Volumetric Muscle Loss (VML), resulting from severe trauma or surgical ablation, is a pathological condition preventing myofibers regeneration, since skeletal muscle owns the remarkable ability to restore tissue damage, but only when limited in size. The current surgical therapies employed in the treatment of this pathology, which particularly affects military personnel, do not yet provide satisfactory results. For this reason, more innovative approaches must be sought, specifically skeletal muscle tissue engineering seems to highlight promising results obtained from preclinical studies in VML mouse model. Despite the great results obtained in rodents, translation into human needs a comparable animal model in terms of size, in order to validate the efficacy of the tissue engineering approach reconstructing larger muscle mass (human-like). In this work we aim to demonstrate the validity of a porcine model, that has underwent a surgical ablation of a large muscle area, as a VML damage model. RESULTS: For this purpose, morphological, ultrasound, histological and fluorescence analyses were carried out on the scar tissue formed following the surgical ablation of the peroneus tertius muscle of Sus scrofa domesticus commonly called mini-pig. In particular, the replenishment of the damaged area, the macrophage infiltration and the vascularization at different time-points were evaluated up to the harvesting of the scar upon six months. CONCLUSION: Here we demonstrated that following VML damage, there is an extremely poor regenerative process in the swine muscle tissue, while the formation of fibrotic, scar tissue occurs. The analyses performed up to 180 days after the injury revealed the development of a stable, structured and cellularized tissue, provided with vessels and extracellular matrix acquiring the status of granulation tissue like in human.
Assuntos
Cicatriz , Doenças Musculares , Humanos , Camundongos , Animais , Suínos , Cicatriz/patologia , Estudos Longitudinais , Porco Miniatura , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Doenças Musculares/patologiaRESUMO
The characterization of fibro/adipogenic progenitor cells (FAPs) in the skeletal muscle has contributed to modify the monocentric view of muscle regeneration beyond muscle satellite cells (MuSCs). Now, we are aware that each population of the muscle niche plays a critical role in modulating homeostasis and regeneration. In the healthy muscle, FAPs contribute to maintain tissue homeostasis and assist MuSCs to cope with limited insults. Here, FAPs sense and integrate niche signals that keep in check their differentiation potential. The disruption of these niche cues leads to FAP differentiation into adipocytes and fibroblasts, both detrimental hallmarks of a large variety of muscle wasting diseases. FAP biology is still in its infancy, and current efforts are focused on the understanding of the molecular circuits governing their double-edged behavior. The present review offers a detailed overview of the pathways and metabolic routes that can be modulated to halt and redirect their fibro/adipogenic potential while favoring their supportive role in muscle regeneration. Finally, we discuss on how single-cell technologies have contributed to resolve FAP transitional states with distinctive roles in muscle regeneration and myopathies.
Assuntos
Adipócitos , Adipogenia , Adipócitos/metabolismo , Diferenciação Celular , Transdução de Sinais , Músculo Esquelético/metabolismo , Regeneração/genéticaRESUMO
In the tumor microenvironment, cancer cells experience hypoxia resulting in the accumulation of misfolded/unfolded proteins largely in the endoplasmic reticulum (ER). Consequently, ER proteotoxicity elicits unfolded protein response (UPR) as an adaptive mechanism to resolve ER stress. In addition to canonical UPR, proteotoxicity also stimulates the selective, autophagy-dependent, removal of discrete ER domains loaded with misfolded proteins to further alleviate ER stress. These mechanisms can favor cancer cell growth, metastasis, and long-term survival. Our investigations reveal that during hypoxia-induced ER stress, the ER-phagy receptor FAM134B targets damaged portions of ER into autophagosomes to restore ER homeostasis in cancer cells. Loss of FAM134B in breast cancer cells results in increased ER stress and reduced cell proliferation. Mechanistically, upon sensing hypoxia-induced proteotoxic stress, the ER chaperone BiP forms a complex with FAM134B and promotes ER-phagy. To prove the translational implication of our mechanistic findings, we identified vitexin as a pharmacological agent that disrupts FAM134B-BiP complex, inhibits ER-phagy, and potently suppresses breast cancer progression in vivo.
Assuntos
Autofagia , Neoplasias da Mama , Autofagia/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Hipóxia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microambiente TumoralRESUMO
Selective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown. Here, we describe an activation mechanism unique to FAM134C during starvation. In fed conditions, FAM134C is phosphorylated by casein kinase 2 (CK2) at critical residues flanking the LIR domain. Phosphorylation of these residues negatively affects binding affinity to the autophagy proteins LC3. During starvation, mTORC1 inhibition limits FAM134C phosphorylation by CK2, hence promoting receptor activation and ER-phagy. Using a novel tool to study ER-phagy in vivo and FAM134C knockout mice, we demonstrated the physiological relevance of FAM134C phosphorylation during starvation-induced ER-phagy in liver lipid metabolism. These data provide a mechanistic insight into ER-phagy regulation and an example of autophagy selectivity during starvation.
RESUMO
Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.
Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia/fisiologia , Humanos , Organelas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismoRESUMO
The term micro-heterogeneity refers to non-genetic cell to cell variability observed in a bell-shaped distribution of the expression of a trait within a population. The contribution of micro-heterogeneity to physiology and pathology remains largely uncharacterised. To address such an issue, we investigated the impact of heterogeneity in skeletal muscle fibro/adipogenic progenitors (FAPs) isolated from an animal model of Duchenne muscular dystrophy (DMD), the mdx mouse. FAPs play an essential role in muscle homoeostasis. However, in pathological conditions or ageing, they are the source of intramuscular infiltrations of fibrotic or adipose tissue. By applying a multiplex flow cytometry assay, we characterised and purified from mdx muscles two FAP cell states expressing different levels of SCA-1. The two cell states are morphologically identical and repopulate each other after several growth cycles. However, they differ in their in vitro behaviour. Cells expressing higher levels of SCA-1 (SCA1-High-FAPs) differentiate more readily into adipocytes while, when exposed to a fibrogenic stimulation, increase the expression of Col1a1 and Timp1 mRNA. A transcriptomic analysis confirmed the adipogenic propensity of SCA1-High-FAPs. In addition, SCA1-High-FAPs proliferate more extensively ex vivo and display more proliferating cells in dystrophic muscles in comparison to SCA1-Low-FAPs. Adipogenesis of both FAP cell states is inhibited in vitro by leucocytes from young dystrophic mice, while leucocytes isolated from aged dystrophic mice are less effective in limiting the adipogenesis of SCA1-High-FAPs suggesting a differential regulatory effect of the microenvironment on micro-heterogeneity. Our data suggest that FAP micro-heterogeneity is modulated in pathological conditions and that this heterogeneity in turn may impact on the behaviour of interstitial mesenchymal cells in genetic diseases.
Assuntos
Adipogenia/fisiologia , Antígenos Ly/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular , CamundongosRESUMO
The interstitial space surrounding the skeletal muscle fibers is populated by a variety of mononuclear cell types. Upon acute or chronic insult, these cell populations become activated and initiate finely-orchestrated crosstalk that promotes myofiber repair and regeneration. Mass cytometry is a powerful and highly multiplexed technique for profiling single-cells. Herein, it was used to dissect the dynamics of cell populations in the skeletal muscle in physiological and pathological conditions. Here, we characterized an antibody panel that could be used to identify most of the cell populations in the muscle interstitial space. By exploiting the mass cytometry resolution, we provided a comprehensive picture of the dynamics of the major cell populations that sensed and responded to acute damage in wild type mice and in a mouse model of Duchenne muscular dystrophy. In addition, we revealed the intrinsic heterogeneity of many of these cell populations.
Assuntos
Músculo Esquelético/patologia , Regeneração , Análise de Célula Única/métodos , Animais , Cardiotoxinas , Contagem de Células , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologiaRESUMO
Fibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/ß-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling. Consistently, pharmacological blockade of GSK3, by the LY2090314 inhibitor, stabilizes ß-catenin and represses PPARγ expression abrogating FAP adipogenesis ex vivo while limiting fatty degeneration in vivo. Furthermore, GSK3 inhibition improves the FAP pro-myogenic role by efficiently stimulating, via follistatin secretion, muscle satellite cell (MuSC) differentiation into mature myotubes. Combining, publicly available single-cell RNAseq datasets, we characterize FAPs as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche. Lastly, we identify WNT5a, whose expression is impaired in dystrophic FAPs, as a crucial WNT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the ß-catenin signaling.
Assuntos
Adipogenia , Desenvolvimento Muscular , Músculo Esquelético , Animais , Diferenciação Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Cultura Primária de Células , Células-Tronco , Via de Sinalização WntRESUMO
Muscle resident fibro-adipogenic progenitors (FAPs), support muscle regeneration by releasing cytokines that stimulate the differentiation of myogenic stem cells. However, in non-physiological contexts (myopathies, atrophy, aging) FAPs cause fibrotic and fat infiltrations that impair muscle function. We set out to perform a fluorescence microscopy-based screening to identify compounds that perturb the differentiation trajectories of these multipotent stem cells. From a primary screen of 1,120 FDA/EMA approved drugs, we identified 34 compounds as potential inhibitors of adipogenic differentiation of FAPs isolated from the murine model (mdx) of Duchenne muscular dystrophy (DMD). The hit list from this screen was surprisingly enriched with compounds from the glucocorticoid (GCs) chemical class, drugs that are known to promote adipogenesis in vitro and in vivo. To shed light on these data, three GCs identified in our screening efforts were characterized by different approaches. We found that like dexamethasone, budesonide inhibits adipogenesis induced by insulin in sub-confluent FAPs. However, both drugs have a pro-adipogenic impact when the adipogenic mix contains factors that increase the concentration of cAMP. Gene expression analysis demonstrated that treatment with glucocorticoids induces the transcription of Gilz/Tsc22d3, an inhibitor of the adipogenic master regulator PPARγ, only in anti-adipogenic conditions. Additionally, alongside their anti-adipogenic effect, GCs are shown to promote terminal differentiation of satellite cells. Both the anti-adipogenic and pro-myogenic effects are mediated by the glucocorticoid receptor and are not observed in the presence of receptor inhibitors. Steroid administration currently represents the standard treatment for DMD patients, the rationale being based on their anti-inflammatory effects. The findings presented here offer new insights on additional glucocorticoid effects on muscle stem cells that may affect muscle homeostasis and physiology.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glucocorticoides/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Adipogenia/efeitos dos fármacos , Animais , Budesonida/administração & dosagem , Budesonida/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia de Fluorescência , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , PPAR gama/metabolismo , Receptores de Glucocorticoides/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Transcrição/metabolismoRESUMO
In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry-based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the ß-catenin-follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.
Assuntos
Fibras Musculares Esqueléticas/metabolismo , Regeneração/fisiologia , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Distrofina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo , Proteômica , Transdução de Sinais , Células-Tronco/metabolismoRESUMO
Progressive decline of pancreatic beta cell function is central to the pathogenesis of type 2 diabetes. Protein phosphorylation regulates glucose-stimulated insulin secretion from beta cells, but how signaling networks are remodeled in diabetic islets in vivo remains unknown. Using high-sensitivity mass spectrometry-based proteomics, we quantified 6,500 proteins and 13,000 phosphopeptides in islets of obese diabetic mice and matched controls, revealing drastic remodeling of key kinase hubs and signaling pathways. Integration with a literature-derived signaling network implicated GSK3 kinase in the control of the beta cell-specific transcription factor PDX1. Deep phosphoproteomic analysis of human islets chronically treated with high glucose demonstrated a conserved glucotoxicity-dependent role of GSK3 kinase in regulating insulin secretion. Remarkably, the ability of beta cells to secrete insulin in response to glucose was rescued almost completely by pharmacological inhibition of GSK3. Thus, our resource enables investigation of mechanisms and drug targets in type 2 diabetes.
Assuntos
Diabetes Mellitus Experimental/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Quinase 3 da Glicogênio Sintase/genética , Proteínas de Homeodomínio/genética , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/química , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Receptores para Leptina/genética , Transdução de Sinais , Transativadores/genéticaRESUMO
Fibro/Adipogenic Progenitors (FAPs) define a stem cell population playing a pro-regenerative role after muscle damage. When removed from their natural niche, FAPs readily differentiate into adipocytes or fibroblasts. This digressive differentiation potential, which is kept under tight control in the healthy muscle niche, contributes to fat and scar infiltrations in degenerative myopathies, such as in Duchenne Muscular Dystrophy (DMD). Controlling FAP differentiation by means of small molecules may contribute to delay the adverse consequences of the progressive pathological degeneration while offering, at the same time, a wider temporal window for gene therapy and cell-based strategies. In a high content phenotypic screening, we identified the immunosuppressant, azathioprine (AZA) as a negative modulator of FAP adipogenesis. We show here that AZA negatively affects the adipogenic propensity of FAPs purified from wild type and mdx mice by impairing the expression of the master adipogenic regulator, peroxisome proliferator-activated receptor γ (PPARγ). We show that this inhibition correlates with a decline in the activation of the AKT-mTOR axis, the main pathway that transduces the pro-adipogenic stimulus triggered by insulin. In addition, AZA exerts a cytostatic effect that has a negative impact on the mitotic clonal process that is required for the terminal differentiation of the preadipocyte-committed cells.
Assuntos
Adipogenia/efeitos dos fármacos , Azatioprina/farmacologia , Imunossupressores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Modelos Biológicos , Distrofia Muscular de Duchenne , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , PPAR gama , Serina-Treonina Quinases TOR/metabolismoRESUMO
Fibro-adipogenic progenitors (FAPs) promote satellite cell differentiation in adult skeletal muscle regeneration. However, in pathological conditions, FAPs are responsible for fibrosis and fatty infiltrations. Here we show that the NOTCH pathway negatively modulates FAP differentiation both in vitro and in vivo. However, FAPs isolated from young dystrophin-deficient mdx mice are insensitive to this control mechanism. An unbiased mass spectrometry-based proteomic analysis of FAPs from muscles of wild-type and mdx mice suggested that the synergistic cooperation between NOTCH and inflammatory signals controls FAP differentiation. Remarkably, we demonstrated that factors released by hematopoietic cells restore the sensitivity to NOTCH adipogenic inhibition in mdx FAPs. These results offer a basis for rationalizing pathological ectopic fat infiltrations in skeletal muscle and may suggest new therapeutic strategies to mitigate the detrimental effects of fat depositions in muscles of dystrophic patients.
Assuntos
Adipogenia , Diferenciação Celular , Receptores Notch/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Fibrose , Camundongos , Camundongos Endogâmicos mdx , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fenótipo , Proteômica/métodos , Regeneração , Transdução de Sinais , Análise de Célula ÚnicaRESUMO
Muscle regeneration is a complex process governed by the interplay between several muscle-resident mononuclear cell populations. Following acute or chronic damage these cell populations are activated, communicate via cell-cell interactions and/or paracrine signals, influencing fate decisions via the activation or repression of internal signaling cascades. These are highly dynamic processes, occurring with distinct temporal and spatial kinetics. The main challenge toward a system level description of the muscle regeneration process is the integration of this plethora of inter- and intra-cellular interactions. We integrated the information on muscle regeneration in a web portal. The scientific content annotated in this portal is organized into two information layers representing relationships between different cell types and intracellular signaling-interactions, respectively. The annotation of the pathways governing the response of each cell type to a variety of stimuli/perturbations occurring during muscle regeneration takes advantage of the information stored in the SIGNOR database. Additional curation efforts have been carried out to increase the coverage of molecular interactions underlying muscle regeneration and to annotate cell-cell interactions. To facilitate the access to information on cell and molecular interactions in the context of muscle regeneration, we have developed Myo-REG, a web portal that captures and integrates published information on skeletal muscle regeneration. The muscle-centered resource we provide is one of a kind in the myology field. A friendly interface allows users to explore, approximately 100 cell interactions or to analyze intracellular pathways related to muscle regeneration. Finally, we discuss how data can be extracted from this portal to support in silico modeling experiments.