Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38148154

RESUMO

SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Espasmos Infantis , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Fenótipo , Neurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/genética
2.
J Neurosci ; 43(10): 1658-1667, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36732074

RESUMO

Brain pH is a critical factor for determining neuronal activity, with alkalosis increasing and acidosis reducing excitability. Acid shifts in brain pH through the breathing of carbogen (5% CO2/95% O2) reduces seizure susceptibility in animal models and patients. The molecular mechanisms underlying this seizure protection remain to be fully elucidated. Here, we demonstrate that male and female mice exposed to carbogen are fully protected from thermogenic-triggered seizures. Whole-cell patch-clamp recordings revealed that acid shifts in extracellular pH (pHo) significantly reduce action potential firing in CA1 pyramidal neurons but did not alter firing in hippocampal inhibitory interneurons. In real-time dynamic clamp experiments, acidification reduced simulated action potential firing generated in hybrid model neurons expressing the excitatory neuron predominant NaV1.2 channel. Conversely, acidification had no effect on action potential firing in hybrid model neurons expressing the interneuron predominant NaV1.1 channel. Furthermore, knockdown of Scn2a mRNA in vivo using antisense oligonucleotides reduced the protective effects of carbogen on seizure susceptibility. Both carbogen-mediated seizure protection and the reduction in CA1 pyramidal neuron action potential firing by low pHo were maintained in an Asic1a knock-out mouse ruling out this acid-sensing channel as the underlying molecular target. These data indicate that the acid-mediated reduction in excitatory neuron firing is mediated, at least in part, through the inhibition of NaV1.2 channels, whereas inhibitory neuron firing is unaffected. This reduction in pyramidal neuron excitability is the likely basis of seizure suppression caused by carbogen-mediated acidification.SIGNIFICANCE STATEMENT Brain pH has long been known to modulate neuronal excitability. Here, we confirm that brain acidification reduces seizure susceptibility in a mouse model of thermogenic seizures. Extracellular acidification reduced excitatory pyramidal neuron firing while having no effect on interneuron firing. Acidification also reduced dynamic clamp firing in cells expressing the NaV1.2 channel but not in cells expressing NaV1.1 channels. In vivo knockdown of Scn2a mRNA reduced seizure protection of acidification. In contrast, acid-mediated seizure protection was maintained in the Asic1a knock-out mouse. These data suggest NaV1.2 channel as an important target for acid-mediated seizure protection. Our results have implications on how natural variations in pH can modulate neuronal excitability and highlight potential antiseizure drug development strategies based on the NaV1.2 channel.


Assuntos
Acidose Respiratória , Segmento Inicial do Axônio , Camundongos , Masculino , Animais , Feminino , Dióxido de Carbono , Convulsões/induzido quimicamente , Convulsões/genética , Células Piramidais , Potenciais de Ação , Camundongos Knockout , RNA Mensageiro
3.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813574

RESUMO

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Assuntos
Epilepsia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Humanos , Masculino , Feminino , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retina/metabolismo , Eletrorretinografia , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Canais de Potássio/fisiologia
4.
Circulation ; 148(14): 1099-1112, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37602409

RESUMO

BACKGROUND: Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS: Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS: We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS: Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.


Assuntos
MicroRNAs , Infarto do Miocárdio , Ratos , Camundongos , Humanos , Animais , Dependovirus/genética , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Reprogramação Celular , Fibroblastos/metabolismo
5.
J Neurochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722169

RESUMO

This preface introduces the Journal of Neurochemistry Special Issue on Advances in Epilepsy Research. Epilepsy is a devastating disease characterized by recurrent seizures. Despite the addition of numerous therapeutics over the last few decades epilepsy patients resistant to standard of care treatments remains stubbornly high. This highlights a clear unmet clinical need and the importance of new research into this disease. One major advance over the last two decades has been the recognition that genetic factors play a significant role in the underlying pathogenesis of epilepsy. Much of our insights into the pathogenic mechanisms underlying genetic epilepsy has come from research into genes that encode ion channels. In this issue, there are up-to-date reviews discussing epilepsy caused by variation in HCN channels, voltage-dependent sodium channels, voltage-dependent calcium channels, and GABAA receptors. The reviews highlight our understanding of the genotype-phenotype relationships and the identification of precision medicine approaches. Complimenting this is a review on metabolic aspects modulating ion channels in genetic disease. This issue also has fundamental research manuscripts investigating how currently approved drugs may rescue NMDA receptor dysfunction and how in vitro neuron cultures can be used to probe network scale deficits and drug impacts in SCN2A disease. Other primary data manuscripts include those focusing on metabolic therapies, gut microbiota, and new in vivo screening tools for identifying novel anti-seizure drugs. Collectively, manuscripts published as part of this edition highlight recent research gains, especially in our understanding of genetic causes of epilepsy involving ion channels.

6.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977818

RESUMO

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Assuntos
Gagueira , Humanos , Animais , Camundongos , Gagueira/genética , Gagueira/patologia , Peptidil-Prolil Isomerase F , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico
7.
Mol Pharmacol ; 104(2): 62-72, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280099

RESUMO

Org 34167 is a small molecule hyperpolarization-activated cyclic nucleotide-gated (HCN) channel modulator that has been trialed in humans for its potential antidepressant activity. The precise action of Org 34167 is not fully understood. Here we use two-electrode voltage clamp recordings and an allosteric model to explore the interaction of Org 34167 with human HCN1 channels. The impact of Org 34167 on channel function included a hyperpolarizing shift in activation voltage dependence and a slowing of activation kinetics. Furthermore, a reduction in the maximum open probability at extreme hyperpolarization argued for an additional voltage-independent mechanism. Org 34167 had a similar impact on a truncated HCN1 channel lacking the C-terminal nucleotide binding domain, thus ruling out an interaction with this domain. Fitting a gating model, derived from a 10-state allosteric scheme, predicted that Org 34167 strongly reduced the equilibrium constant for the voltage-independent pore domain to favor a closed pore, as well as reducing the voltage sensing domain-pore domain coupling and shifting the zero voltage equilibrium constant of the voltage sensing domain to favor the inactive state. SIGNIFICANCE STATEMENT: The brain penetrant small molecule Org 34167 has been reported to have an antidepressant action by targeting HCN channels; however, its mode of action is unknown. We used heterologously expressed human HCN1 channels to show that Org 34167 inhibits channel activity by modulating kinetic parameters associated with the channel pore domain, voltage sensing domain, and interdomain coupling.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , AMP Cíclico/metabolismo , Antidepressivos/farmacologia
8.
J Neurochem ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565989

RESUMO

Pathogenic variation in HCN1 is now an established cause of epilepsy and intellectual disability. Variation in HCN1 causes a spectrum of disease with a genotype-phenotype relationship emerging. De novo pathogenic variants that occur in the transmembrane domains of the channel typically cause a cation 'leak' that associates with severe developmental and epileptic encephalopathy (DEE). Genotype-phenotype associations for variants that fall outside of the transmembrane domains are less well established but do include milder forms of epilepsy that can be either de novo or inherited. HCN1 DEE mouse models have been generated which recapitulate the seizures and learning difficulties seen in human patients. These mice have also acted as powerful preclinical models which share pharmacoresponsiveness with human HCN1 DEE patients. Data from these mouse models support the conclusion that anti-seizure medications with sodium channel block as their primary mechanism of action should be used with caution in HCN1 DEE. Other comorbidities of HCN1 DEE including retinal dysfunction have also been modelled in HCN1 DEE mice, suggesting HCN1 variants can cause a dramatically reduced sensitivity to light with limited ability to process temporal information. Our understanding of the genetics and pathophysiological mechanisms underlying HCN1 epilepsy has progressed significantly and is already influencing therapy. However, more research effort is needed to fully understand the natural histories of HCN1 epilepsies and to develop precision therapeutic approaches.

9.
Epilepsia ; 64(1): e1-e8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300716

RESUMO

Acquisition of drug-sensitivity profiles is challenging in rare epilepsies. Anecdotal evidence suggests that antiseizure medications that block sodium channels as their primary mechanism of action exacerbate seizures in HCN1 developmental and epileptic encephalopathies (DEEs), whereas sodium valproate is effective for some patients. The Hcn1 M294L heterozygous knock-in (Hcn1M294L ) mouse carries the homologue of the recurrent gain-of-function HCN1 M305L pathogenic variant and recapitulates the seizure and some behavioral phenotypes observed in patients. We used this mouse model to study drug efficacy in HCN1 DEE. Hcn1M294L mice display epileptiform spiking on electrocorticography (ECoG), which we used as a quantifiable measure of drug effect. Phenytoin, lamotrigine, and retigabine significantly increased ECoG spike frequency, with lamotrigine and retigabine triggering seizures in a subset of the mice tested. In addition, there was a strong trend for carbamazepine to increase spiking. In contrast, levetiracetam, diazepam, sodium valproate, and ethosuximide all significantly reduced ECoG spike frequency. Drugs that reduced spiking did not cause any consistent ECoG spectral changes, whereas drugs that increased spiking all increased power in the slower delta and/or theta bands. These data provide a framework on which to build our understanding of gain-of-function HCN1 DEE pharmacosensitivity in the clinical setting.


Assuntos
Epilepsia Generalizada , Epilepsia , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Lamotrigina/uso terapêutico , Epilepsia/tratamento farmacológico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia Generalizada/tratamento farmacológico , Convulsões/tratamento farmacológico , Canais de Potássio/genética , Canais de Potássio/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética
10.
Proc Natl Acad Sci U S A ; 117(6): 3192-3202, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974304

RESUMO

The binding of GABA (γ-aminobutyric acid) to extrasynaptic GABAA receptors generates tonic inhibition that acts as a powerful modulator of cortical network activity. Despite GABA being present throughout the extracellular space of the brain, previous work has shown that GABA may differentially modulate the excitability of neuron subtypes according to variation in chloride gradient. Here, using biophysically detailed neuron models, we predict that tonic inhibition can differentially modulate the excitability of neuron subtypes according to variation in electrophysiological properties. Surprisingly, tonic inhibition increased the responsiveness (or gain) in models with features typical for somatostatin interneurons but decreased gain in models with features typical for parvalbumin interneurons. Patch-clamp recordings from cortical interneurons supported these predictions, and further in silico analysis was then performed to seek a putative mechanism underlying gain modulation. We found that gain modulation in models was dependent upon the magnitude of tonic current generated at depolarized membrane potential-a property associated with outward rectifying GABAA receptors. Furthermore, tonic inhibition produced two biophysical changes in models of relevance to neuronal excitability: 1) enhanced action potential repolarization via increased current flow into the dendritic compartment, and 2) reduced activation of voltage-dependent potassium channels. Finally, we show theoretically that reduced potassium channel activation selectively increases gain in models possessing action potential dynamics typical for somatostatin interneurons. Potassium channels in parvalbumin-type models deactivate rapidly and are unavailable for further modulation. These findings show that GABA can differentially modulate interneuron excitability and suggest a mechanism through which this occurs in silico via differences of intrinsic electrophysiological properties.


Assuntos
Córtex Cerebral , Interneurônios , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Cinética , Camundongos , Modelos Neurológicos , Técnicas de Patch-Clamp
11.
Neurobiol Dis ; 164: 105622, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031483

RESUMO

Genetic variation in voltage-gated sodium (NaV) channels is a significant contributor to neurodevelopmental disorders. NaV channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants. Precision therapies targeting these genes and their transcript variants are currently in preclinical development, yet the developmental expression of these transcripts in the human brain is yet to be fully understood. Additionally, the functional consequences of some mutations differ depending on the studied channel isoform, suggesting differential transcript variant expression can affect disease prognoses. We characterise the expression of the four SCNxAs and their transcript variants in human, Rhesus monkey and mouse brain using publicly available RNA-sequencing data and analysis tools, demonstrating that this approach can be used to answer important biological questions of gene and transcript developmental regulation. We find that gene expression and transcript variant regulation are conserved across species at similar developmental stages and determine the developmental milestones for transcript variant expression. Our study provides a guide to researchers testing therapies and clinicians advising prognoses based on the expression of channel isoforms.


Assuntos
Encéfalo/embriologia , Mutação , Canais de Sódio/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Macaca mulatta , Camundongos , Canais de Sódio/genética
12.
Epilepsia ; 63(7): 1693-1703, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460272

RESUMO

OBJECTIVE: Antiseizure drugs (ASDs) modulate synaptic and ion channel function to prevent abnormal hypersynchronous or excitatory activity arising in neuronal networks, but the relationship between ASDs with respect to their impact on network activity is poorly defined. In this study, we first investigated whether different ASD classes exert differential impact upon network activity, and we then sought to classify ASDs according to their impact on network activity. METHODS: We used multielectrode arrays (MEAs) to record the network activity of cultured cortical neurons after applying ASDs from two classes: sodium channel blockers (SCBs) and γ-aminobutyric acid type A receptor-positive allosteric modulators (GABA PAMs). A two-dimensional representation of changes in network features was then derived, and the ability of this low-dimensional representation to classify ASDs with different molecular targets was assessed. RESULTS: A two-dimensional representation of network features revealed a separation between the SCB and GABA PAM drug classes, and could classify several test compounds known to act through these molecular targets. Interestingly, several ASDs with novel targets, such as cannabidiol and retigabine, had closer similarity to the SCB class with respect to their impact upon network activity. SIGNIFICANCE: These results demonstrate that the molecular target of two common classes of ASDs is reflected through characteristic changes in network activity of cultured neurons. Furthermore, a low-dimensional representation of network features can be used to infer an ASDs molecular target. This approach may allow for drug screening to be performed based on features extracted from MEA recordings.


Assuntos
Neurônios , Aprendizado de Máquina não Supervisionado , Neurônios/fisiologia , Receptores de GABA , Bloqueadores dos Canais de Sódio , Ácido gama-Aminobutírico
13.
Epilepsia ; 63(6): e57-e62, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397174

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in epilepsy. The underlying pathological mechanisms are likely to be multifactorial. Cardiac arrhythmia has been suggested as a cause of death in some patients with SUDEP. SCN5A encodes the cardiac Nav 1.5 sodium channel. SCN5A variants that result in either loss or gain of channel function cause cardiac arrhythmias. Rare SCN5A variants have been reported in SUDEP cases, but the impact of these variants on channel function is unknown. Here, we use whole-cell voltage clamp recordings to perform functional analyses of rare SCN5A SUDEP variants, p.V223G, p.I397V, and p.R523C. Expression and biophysical properties, including activation, inactivation, and recovery from inactivation, were probed. Each SCN5A variant significantly impacted human NaV 1.5 channel function, indicating that they could cause cardiac arrhythmias. The patient carrying the p.R523C variant was on lamotrigine, an antiseizure medication implicated in SUDEP. Therapeutic concentration of lamotrigine caused a slowing of the rate of recovery from inactivation and a hyperpolarizing shift in the voltage of inactivation of human NaV 1.5 wild-type, but not p.R523C channels, implicating a gene-by-drug interaction. These data suggest that SCN5A arrhythmogenic variants may confer increased risk of sudden death in individuals with epilepsy.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Anticonvulsivantes/uso terapêutico , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Causas de Morte , Morte Súbita/etiologia , Morte Súbita Cardíaca/etiologia , Epilepsia/complicações , Epilepsia/genética , Humanos , Lamotrigina/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
14.
Brain ; 144(7): 2060-2073, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822003

RESUMO

Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.


Assuntos
Encefalopatias/metabolismo , Modelos Animais de Doenças , Epilepsia/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Animais , Encefalopatias/genética , Epilepsia/genética , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Mutantes , Mutação , Neurônios/patologia , Canais de Potássio/genética , Células Piramidais/metabolismo , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 115(34): E8077-E8085, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076230

RESUMO

Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.


Assuntos
Epilepsias Mioclônicas/tratamento farmacológico , Interneurônios/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Venenos de Aranha/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Células HEK293 , Humanos , Interneurônios/patologia , Camundongos , Camundongos Mutantes , Canal de Sódio Disparado por Voltagem NAV1.1/genética
16.
Pharmacol Rev ; 70(1): 142-173, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263209

RESUMO

Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.


Assuntos
Epilepsia/genética , Canais Iônicos/genética , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Terapia de Alvo Molecular
17.
Curr Opin Neurol ; 32(2): 183-190, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664068

RESUMO

PURPOSE OF REVIEW: Recent publications point to an increasingly important role of variants in genes encoding GABAA receptor subunits associated with both common and rare forms of epilepsies. The aim of this review is to give an overview of the current clinical phenotypes, genetic findings and pathophysiological mechanisms related to GABAA receptor variants. RECENT FINDINGS: Early work showed that inherited variants in GABRG2 and GABRA1 cause relatively mild forms of monogenic epilepsies in large families. More recent studies have revealed that de novo variants in several GABAA receptor genes cause severe developmental and epileptic encephalopathies, inherited variants cause remarkably variable phenotypes within the same pedigrees ranging from asymptomatic carriers to developmental and epileptic encephalopathies, and variants in all GABAA receptor genes are enriched in common forms of epilepsy, namely rolandic epilepsy and genetic generalized epilepsy. Analyses from cellular expression systems and mouse models suggest that all variants cause a loss of GABAA receptor function resulting in GABAergic disinhibition. SUMMARY: Genetic studies have revealed a crucial role of the GABAergic system in the underlying pathogenesis of various forms of common and rare epilepsies. Our understanding of functional consequences of GABAA receptor variants provide an opportunity to develop precision-based therapeutic strategies that are hopefully free from the side-effect burden seen with currently available GABAergic drugs.


Assuntos
Epilepsia/genética , Receptores de GABA-A/genética , Animais , Epilepsia/fisiopatologia , Humanos , Camundongos
18.
Hum Mutat ; 39(2): 202-209, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064616

RESUMO

Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism.


Assuntos
DNA Complementar/genética , Epilepsia Generalizada/genética , Epilepsia/genética , Mutação com Ganho de Função/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Eletrofisiologia , Feminino , Humanos , Masculino , Modelos Biológicos , Linhagem
19.
Gastroenterology ; 152(6): 1407-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28115057

RESUMO

BACKGROUND & AIMS: Cell therapy offers the potential to treat gastrointestinal motility disorders caused by diseased or absent enteric neurons. We examined whether neurons generated from transplanted enteric neural cells provide a functional innervation of bowel smooth muscle in mice. METHODS: Enteric neural cells expressing the light-sensitive ion channel, channelrhodopsin, were isolated from the fetal or postnatal mouse bowel and transplanted into the distal colon of 3- to 4-week-old wild-type recipient mice. Intracellular electrophysiological recordings of responses to light stimulation of the transplanted cells were made from colonic smooth muscle cells in recipient mice. Electrical stimulation of endogenous enteric neurons was used as a control. RESULTS: The axons of graft-derived neurons formed a plexus in the circular muscle layer. Selective stimulation of graft-derived cells by light resulted in excitatory and inhibitory junction potentials, the electrical events underlying contraction and relaxation, respectively, in colonic muscle cells. Graft-derived excitatory and inhibitory motor neurons released the same neurotransmitters as endogenous motor neurons-acetylcholine and a combination of adenosine triphosphate and nitric oxide, respectively. Graft-derived neurons also included interneurons that provided synaptic inputs to motor neurons, but the pharmacologic properties of interneurons varied with the age of the donors from which enteric neural cells were obtained. CONCLUSIONS: Enteric neural cells transplanted into the bowel give rise to multiple functional types of neurons that integrate and provide a functional innervation of the smooth muscle of the bowel wall. Circuits composed of both motor neurons and interneurons were established, but the age at which cells are isolated influences the neurotransmitter phenotype of interneurons that are generated.


Assuntos
Colo/inervação , Músculo Liso/inervação , Neurônios/fisiologia , Neurônios/transplante , Potenciais Sinápticos , Acetilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Axônios/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Channelrhodopsins , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Sistema Nervoso Entérico/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Estimulação Luminosa
20.
Ann Neurol ; 81(5): 677-689, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28380698

RESUMO

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Assuntos
Ataxia , Disfunção Cognitiva/etiologia , Epilepsias Mioclônicas , Temperatura Alta , Canais de Potássio Shaw/metabolismo , Adolescente , Adulto , Idade de Início , Ataxia/complicações , Ataxia/diagnóstico por imagem , Ataxia/genética , Ataxia/fisiopatologia , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Canais de Potássio Shaw/genética , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA