Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anesthesiology ; 138(6): 611-623, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893015

RESUMO

BACKGROUND: Maintenance of ion homeostasis is essential for normal brain function. Inhalational anesthetics are known to act on various receptors, but their effects on ion homeostatic systems, such as sodium/potassium-adenosine triphosphatase (Na+/K+-ATPase), remain largely unexplored. Based on reports demonstrating global network activity and wakefulness modulation by interstitial ions, the hypothesis was that deep isoflurane anesthesia affects ion homeostasis and the key mechanism for clearing extracellular potassium, Na+/K+-ATPase. METHODS: Using ion-selective microelectrodes, this study assessed isoflurane-induced extracellular ion dynamics in cortical slices of male and female Wistar rats in the absence of synaptic activity, in the presence of two-pore-domain potassium channel antagonists, during seizures, and during spreading depolarizations. The specific isoflurane effects on Na+/K+-ATPase function were measured using a coupled enzyme assay and studied the relevance of the findings in vivo and in silico. RESULTS: Isoflurane concentrations clinically relevant for burst suppression anesthesia increased baseline extracellular potassium (mean ± SD, 3.0 ± 0.0 vs. 3.9 ± 0.5 mM; P < 0.001; n = 39) and lowered extracellular sodium (153.4 ± 0.8 vs. 145.2 ± 6.0 mM; P < 0.001; n = 28). Similar changes in extracellular potassium and extracellular sodium and a substantial drop in extracellular calcium (1.5 ± 0.0 vs. 1.2 ± 0.1 mM; P = 0.001; n = 16) during inhibition of synaptic activity and two-pore-domain potassium suggested a different underlying mechanism. After seizure-like events and spreading depolarization, isoflurane greatly slowed extracellular potassium clearance (63.4 ± 18.2 vs. 196.2 ± 82.4 s; P < 0.001; n = 14). Na+/K+-ATPase activity was markedly reduced after isoflurane exposure (greater than 25%), affecting specifically the α2/3 activity fraction. In vivo, isoflurane-induced burst suppression resulted in impaired extracellular potassium clearance and interstitial potassium accumulation. A computational biophysical model reproduced the observed effects on extracellular potassium and displayed intensified bursting when Na+/K+-ATPase activity was reduced by 35%. Finally, Na+/K+-ATPase inhibition with ouabain induced burst-like activity during light anesthesia in vivo. CONCLUSIONS: The results demonstrate cortical ion homeostasis perturbation and specific Na+/K+-ATPase impairment during deep isoflurane anesthesia. Slowed potassium clearance and extracellular accumulation might modulate cortical excitability during burst suppression generation, while prolonged Na+/K+-ATPase impairment could contribute to neuronal dysfunction after deep anesthesia.


Assuntos
Isoflurano , Ratos , Animais , Masculino , Feminino , Isoflurano/farmacologia , Ratos Wistar , Homeostase , Encéfalo , Convulsões , Potássio/farmacologia , Sódio , Adenosina Trifosfatases
2.
Brain ; 145(4): 1264-1284, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35411920

RESUMO

Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (ß = 0.474, P < 0.001), delayed median Glasgow Coma Score (ß = -0.201, P = 0.005) and peak transcranial Doppler (ß = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Lesões Encefálicas/complicações , Infarto Cerebral/complicações , Eletrocorticografia , Humanos , Estudos Prospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem
3.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194729

RESUMO

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos , Isquemia
4.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257321

RESUMO

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral , Lesões Encefálicas/terapia , Consenso , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos
5.
Anesthesiology ; 140(3): 635-636, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157419
7.
Acta Neurochir Suppl ; 120: 137-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25366613

RESUMO

The term spreading depolarization describes a mechanism of abrupt, massive ion translocation between neurons and the interstitial space, which leads to a cytotoxic edema in the gray matter of the brain. In energy-compromised tissue, spreading depolarization is preceded by a nonspreading silencing (depression of spontaneous activity) because of a neuronal hyperpolarization. By contrast, in tissue that is not energy compromised, spreading depolarization is accompanied by a spreading silencing (spreading depression) of spontaneous activity caused by a depolarization block. It is assumed that the nonspreading silencing translates into the initial clinical symptoms of ischemic stroke and the spreading silencing (spreading depression) into the symptoms of migraine aura. In energy-compromised tissue, spreading depolarization facilitates neuronal death, whereas, in healthy tissue, it is relatively innocuous. Therapies targeting spreading depolarization in metabolically compromised tissue may potentially treat conditions of acute cerebral injury such as aneurysmal subarachnoid hemorrhage.


Assuntos
Isquemia Encefálica/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Humanos
8.
Neurocrit Care ; 22(3): 450-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25277888

RESUMO

BACKGROUND: Continuous EEG (cEEG) may allow monitoring of patients with aneurysmal subarachnoid hemorrhage (SAH) for delayed cerebral ischemia (DCI) and seizures, including non-convulsive seizures (NCSz), and non-convulsive status epilepticus (NCSE). We aimed to evaluate: (a) the diagnostic accuracy of cEEG as a confirmatory test, (b) the prognostic value of EEG patterns suggestive of seizures and DCI, and (c) the effectiveness of intensified neuromonitoring using cEEG in terms of improved clinical outcome following SAH. METHODS: A systematic review was performed with eligible studies selected from multiple indexing databases through June 2014. The methodological quality of these studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. RESULTS: Eighteen studies were identified, including cEEG data from 481 patients with aneurysmal SAH. NCSz were diagnosed in 7-18 % of patients; NCSE in 3-13 %. NCSE was associated with increased age (mean age 68 years) and mortality (82-100 %) compared to the entire patient population (53.9 years; mortality 13 %; p values <0.05). DCI was diagnosed in 20-46 % of patients. Quantitative EEG patterns suggestive of DCI included decreased alpha/delta ratio, relative alpha variability, and total power. All studies were subject to a high risk of bias concerning patient selection and cEEG methodology. CONCLUSIONS: cEEG monitoring following SAH detects an increased number of subclinical seizures and may predict DCI many hours in advance. NCSE is associated with high mortality and morbidity, whereas for DCI identified by cEEG this association is less clear. Prospective randomized controlled multicenter trials are needed to evaluate the benefits (or risks) of intensified treatment of seizures and DCI following SAH.


Assuntos
Isquemia Encefálica/diagnóstico , Eletroencefalografia , Monitorização Neurofisiológica , Convulsões/diagnóstico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Humanos , Convulsões/etiologia , Convulsões/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia
9.
J Cereb Blood Flow Metab ; 43(2): 210-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36329390

RESUMO

Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hipertensão , Enxaqueca com Aura , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Ratos Endogâmicos SHR , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/genética , Cloreto de Sódio na Dieta , Hemodinâmica , Ratos Endogâmicos WKY , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Hipertensão/complicações
10.
Front Cell Neurosci ; 16: 837650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237133

RESUMO

Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs-Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.

11.
Stroke ; 42(10): 2917-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21836085

RESUMO

BACKGROUND AND PURPOSE: Experimental and clinical evidence suggests that prolonged spreading depolarizations (SDs) are a promising target for therapeutic intervention in stroke because they recruit tissue at risk into necrosis by protracted intracellular calcium surge and massive glutamate release. Unfortunately, unlike SDs in healthy tissue, they are resistant to drugs such as N-methyl-d-aspartate-receptor antagonists. This drug resistance of SD in low perfusion areas may be due to the gradual rise of extracellular potassium before SD onset. Brain slices from patients undergoing surgery for intractable epilepsy allow for screening of drugs, targeting pharmacoresistant SDs under elevated potassium in human tissue. However, network changes associated with epilepsy may interfere with tissue susceptibility to SD. This could distort the results of pharmacological tests. METHODS: We investigated the threshold for SD, induced by a gradual rise of potassium, in neocortex slices of patients with intractable epilepsy and of chronically epileptic rats as well as age-matched and younger control rats using combined extracellular potassium/field recordings and intrinsic optical imaging. RESULTS: Both age and epilepsy significantly increased the potassium threshold, which was similarly high in epileptic rat and human slices (23.6±2.4 mmol/L versus 22.3±2.8 mmol/L). CONCLUSIONS: Our results suggest that chronic epilepsy confers resistance against SD. This should be considered when human tissue is used for screening of neuroprotective drugs. The finding of similar potassium thresholds for SD in epileptic human and rat neocortex challenges previous speculations that the resistance of the human brain against SD is markedly higher than that of the rodent brain.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Animais , Epilepsia/induzido quimicamente , Humanos , Masculino , Pilocarpina , Ratos , Ratos Wistar
12.
J Cereb Blood Flow Metab ; 41(10): 2640-2655, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33899556

RESUMO

Deep anaesthesia may impair neuronal, vascular and mitochondrial function facilitating neurological complications, such as delirium and stroke. On the other hand, deep anaesthesia is performed for neuroprotection in critical brain diseases such as status epilepticus or traumatic brain injury. Since the commonly used anaesthetic propofol causes mitochondrial dysfunction, we investigated the impact of the alternative anaesthetic isoflurane on neuro-metabolism. In deeply anaesthetised Wistar rats (burst suppression pattern), we measured increased cortical tissue oxygen pressure (ptiO2), a ∼35% drop in regional cerebral blood flow (rCBF) and burst-associated neurovascular responses. In vitro, 3% isoflurane blocked synaptic transmission and impaired network oscillations, thereby decreasing the cerebral metabolic rate of oxygen (CMRO2). Concerning mitochondrial function, isoflurane induced a reductive shift in flavin adenine dinucleotide (FAD) and decreased stimulus-induced FAD transients as Ca2+ influx was reduced by ∼50%. Computer simulations based on experimental results predicted no direct effects of isoflurane on mitochondrial complexes or ATP-synthesis. We found that isoflurane-induced burst suppression is related to decreased ATP consumption due to inhibition of synaptic activity while neurovascular coupling and mitochondrial function remain intact. The neurometabolic profile of isoflurane thus appears to be superior to that of propofol which has been shown to impair the mitochondrial respiratory chain.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Isoflurano/efeitos adversos , Acoplamento Neurovascular/genética , Explosão Respiratória/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
13.
J Cereb Blood Flow Metab ; 40(3): 622-638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30819023

RESUMO

Compromised Na+/K+-ATPase function is associated with the occurrence of spreading depolarization (SD). Mutations in ATP1A2, the gene encoding the α2 isoform of the Na+/K+-ATPase, were identified in patients with familial hemiplegic migraine type 2 (FHM2), a Mendelian model disease for SD. This suggests a distinct role for the α2 isoform in modulating SD susceptibility and raises questions about underlying mechanisms including the roles of other Na+/K+-ATPase α isoforms. Here, we investigated the effects of genetic ablation and pharmacological inhibition of α1, α2, and α3 on SD using heterozygous knock-out mice. We found that only α2 heterozygous mice displayed higher SD susceptibility when challenged with prolonged extracellular high potassium concentration ([K+]o), a pronounced post SD oligemia and higher SD speed in-vivo. By contrast, under physiological [K+]o, α2 heterozygous mice showed similar SD susceptibility compared to wild-type littermates. Deficiency of α3 resulted in increased resistance against electrically induced SD in-vivo, whereas α1 deficiency did not affect SD. The results support important roles of the α2 isoform in SD. Moreover, they suggest that specific experimental conditions can be necessary to reveal an inherent SD phenotype by driving a (meta-) stable system into decompensation, reminiscent of the episodic nature of SDs in various diseases.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Enxaqueca com Aura/enzimologia , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/deficiência , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas/patologia , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Front Neurosci ; 13: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068779

RESUMO

Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed 'terminal SD,' shows prolonged depolarization, in addition to a slow baseline variation called 'negative ultraslow potential' (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP's amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.

15.
Neurology ; 92(4): e326-e341, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593517

RESUMO

OBJECTIVE: To investigate whether spreading depolarization (SD)-related variables at 2 different time windows (days 1-4 and 5-8) after aneurysmal subarachnoid hemorrhage (aSAH) correlate with the stereologically determined volume of early focal brain injury on the preinterventional CT scan. METHODS: In this observational multicenter study of 54 patients, volumes of unaffected brain tissue, ventricles, cerebellum, aSAH, intracerebral hemorrhage, and focal parenchymal hypodensity were stereologically estimated. Patients were electrocorticographically monitored using subdural electrodes for 81.8 hours (median) (interquartile range: 70.6-90.5) during days 1-4 (n = 54) and for 75.9 (59.5-88.7) hours during days 5-8 (n = 51). Peak total SD-induced depression duration of a recording day (PTDDD) and peak numbers of (1) SDs, (2) isoelectric SDs, and (3) spreading depressions of a recording day were determined following the recommendations of the Co-Operative Studies on Brain Injury Depolarizations. RESULTS: Thirty-three of 37 patients with early focal brain injury (intracerebral hemorrhage and/or hypodensity) in contrast to 7 of 17 without displayed SDs during days 1-4 (sensitivity: 89% [95% confidence interval, CI: 75%-97%], specificity: 59% [CI: 33%-82%], positive predictive value: 83% [CI: 67%-93%], negative predictive value: 71% [CI: 42%-92%], Fisher exact test, p < 0.001). All 4 SD-related variables during days 1-4 significantly correlated with the volume of early focal brain injury (Spearman rank order correlations). A multiple ordinal regression analysis identified the PTDDD as the most important predictor. CONCLUSIONS: Our findings suggest that early focal brain injury after aSAH is associated with early SDs and further support the notion that SDs are a biomarker of focal brain lesions.


Assuntos
Lesões Encefálicas/etiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hemorragia Subaracnóidea/complicações , Idoso , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hemorragia Subaracnóidea/diagnóstico por imagem , Fatores de Tempo , Tomógrafos Computadorizados
16.
J Cereb Blood Flow Metab ; 37(5): 1687-1705, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994042

RESUMO

In rats, spreading depolarization induces vasodilation/hyperemia in naïve tissue but the inverse response when artificial cerebrospinal fluid is topically applied to the brain containing (a) a nitric oxide-lowering agent and (b) elevated K+. The inverse response is characterized by severe vasoconstriction/ischemia. The perfusion deficit runs together with the depolarization in the tissue (=spreading ischemia). Here, we found in male Wistar rats that pre-treatment with artificial cerebrospinal fluid containing elevated K+ in vivo led to a selective decline in α2/α3 Na+/K+-ATPase activity, determined spectrophotometrically ex vivo. Moreover, spreading ischemia, recorded with laser-Doppler flowmetry and electrocorticography, resulted from artificial cerebrospinal fluid containing a nitric oxide-lowering agent in combination with the Na+/K+-ATPase inhibitor ouabain at a concentration selectively inhibiting α2/α3 activity. Decline in α2/α3 activity results in increased Ca2+ uptake by internal stores of astrocytes, vascular myocytes, and pericytes since Ca2+ outflux via plasmalemmal Na+/Ca2+-exchanger declines. Augmented Ca2+ mobilization from internal stores during spreading depolarization might enhance vasoconstriction, thus, contributing to spreading ischemia. Accordingly, spreading ischemia was significantly shortened when intracellular Ca2+ stores were emptied by pre-treatment with thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). These findings might have relevance for clinical conditions, in which spreading ischemia occurs such as delayed cerebral ischemia after subarachnoid hemorrhage.


Assuntos
Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Vasoconstrição/fisiologia , Animais , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Líquido Cefalorraquidiano/química , Circulação Cerebrovascular/efeitos dos fármacos , Eletrocorticografia , Fluxometria por Laser-Doppler , Masculino , Cloreto de Potássio/farmacologia , Ratos Wistar , Espectrofotometria , Vasoconstrição/efeitos dos fármacos
17.
J Cereb Blood Flow Metab ; 37(5): 1595-1625, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27317657

RESUMO

Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.


Assuntos
Lesões Encefálicas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Cuidados Críticos/métodos , Substância Cinzenta/fisiopatologia , Monitorização Neurofisiológica/métodos , Acidente Vascular Cerebral/fisiopatologia , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/terapia , Circulação Cerebrovascular , Eletrocorticografia , Humanos , Guias de Prática Clínica como Assunto , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
18.
Neuron ; 86(4): 902-922, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25996134

RESUMO

The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Transtornos de Enxaqueca/diagnóstico , Neurônios/metabolismo , Acidente Vascular Cerebral/diagnóstico , Animais , Humanos , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
19.
Neuroscientist ; 19(1): 25-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22829393

RESUMO

In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs-Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death.


Assuntos
Córtex Cerebral/fisiologia , Fenômenos Químicos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Metabolismo Energético , Termodinâmica , Animais , Biofísica , Encefalopatias/patologia , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA