Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioinformatics ; 33(23): 3802-3804, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036643

RESUMO

MOTIVATION: Sanger sequencing is still being employed for sequence variant detection by many laboratories, especially in a clinical setting. However, chromatogram interpretation often requires manual inspection and in some cases, considerable expertise. RESULTS: We present GLASS, a web-based Sanger sequence trace viewer, editor, aligner and variant caller, built to assist with the assessment of variations in 'curated' or user-provided genes. Critically, it produces a standardized variant output as recommended by the Human Genome Variation Society. AVAILABILITY AND IMPLEMENTATION: GLASS is freely available at http://bat.infspire.org/genomepd/glass/ with source code at https://github.com/infspiredBAT/GLASS. CONTACT: nikos.darzentas@gmail.com or malcikova.jitka@fnbrno.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Software , Processamento Alternativo , Humanos , Polimorfismo Genético , Proteína Supressora de Tumor p53/genética
2.
Bioinformatics ; 33(3): 435-437, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28172348

RESUMO

Motivation: The study of immunoglobulins and T cell receptors using next-generation sequencing has finally allowed exploring immune repertoires and responses in their immense variability and complexity. Unsurprisingly, their analysis and interpretation is a highly convoluted task. Results: We thus implemented ARResT/Interrogate, a web-based, interactive application. It can organize and filter large amounts of immunogenetic data by numerous criteria, calculate several relevant statistics, and present results in the form of multiple interconnected visualizations. Availability and Implementation: ARResT/Interrogate is implemented primarily in R, and is freely available at http://bat.infspire.org/arrest/interrogate/ Contact: nikos.darzentas@gmail.com Supplementary Information: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunogenética/métodos , Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Software , Variação Genética , Humanos , Receptores de Antígenos de Linfócitos T/genética
3.
Clin Immunol ; 183: 8-16, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645875

RESUMO

The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immunogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL) and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed repertoire, are shared with the postnatal samples, consistent with persisting fetal IgM+ B cells being a source of natural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM+ B cell receptors associated with chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B cells can be subject to malignant transformation late in life. Overall, these novel data provide unique insights into the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime.


Assuntos
Linfócitos B/imunologia , Medula Óssea/imunologia , Feto/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Leucemia Linfocítica Crônica de Células B/genética , Fígado/imunologia , Linfopoese/genética , Receptores de Antígenos de Linfócitos B/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfopoese/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Análise de Sequência de DNA
4.
J Mol Diagn ; 23(8): 959-974, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082072

RESUMO

B-cell neoplasms represent a clinically heterogeneous group of hematologic malignancies with considerably diverse genomic architecture recently endorsed by next-generation sequencing (NGS) studies. Because multiple genetic defects have a potential or confirmed clinical impact, a tendency toward more comprehensive testing of diagnostic, prognostic, and predictive markers is desired. This study introduces the design, validation, and implementation of an integrative, custom-designed, capture-based NGS panel titled LYmphoid NeXt-generation sequencing (LYNX) for the analysis of standard and novel molecular markers in the most common lymphoid neoplasms (chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma). A single LYNX test provides the following: i) accurate detection of mutations in all coding exons and splice sites of 70 lymphoma-related genes with a sensitivity of 5% variant allele frequency, ii) reliable identification of large genome-wide (≥6 Mb) and recurrent chromosomal aberrations (≥300 kb) in at least 20% of the clonal cell fraction, iii) the assessment of immunoglobulin and T-cell receptor gene rearrangements, and iv) lymphoma-specific translocation detection. Dedicated bioinformatic pipelines were designed to detect all markers mentioned above. The LYNX panel represents a comprehensive, up-to-date tool suitable for routine testing of lymphoid neoplasms with research and clinical applicability. It allows a wide adoption of capture-based targeted NGS in clinical practice and personalized management of patients with lymphoproliferative diseases.


Assuntos
Biomarcadores Tumorais , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Linfoide/diagnóstico , Leucemia Linfoide/genética , Linfoma/diagnóstico , Linfoma/genética , Aberrações Cromossômicas , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação INDEL , Técnicas de Diagnóstico Molecular , Prognóstico , Translocação Genética
5.
J Mol Diagn ; 23(9): 1105-1115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186174

RESUMO

Ig gene (IG) clonality analysis has an important role in the distinction of benign and malignant B-cell lymphoid proliferations and is mostly performed with the conventional EuroClonality/BIOMED-2 multiplex PCR protocol and GeneScan fragment size analysis. Recently, the EuroClonality-NGS Working Group developed a method for next-generation sequencing (NGS)-based IG clonality analysis. Herein, we report the results of an international multicenter biological validation of this novel method compared with the gold standard EuroClonality/BIOMED-2 protocol, based on 209 specimens of reactive and neoplastic lymphoproliferations. NGS-based IG clonality analysis showed a high interlaboratory concordance (99%) and high concordance with conventional clonality analysis (98%) for the molecular conclusion. Detailed analysis of the individual IG heavy chain and kappa light chain targets showed that NGS-based clonality analysis was more often able to detect a clonal rearrangement or yield an interpretable result. NGS-based and conventional clonality analysis detected a clone in 96% and 95% of B-cell neoplasms, respectively, and all but one of the reactive cases were scored polyclonal. We conclude that NGS-based IG clonality analysis performs comparable to conventional clonality analysis. We provide critical parameters for interpretation and discuss a first step toward a quantitative scoring approach for NGS clonality results. Considering the advantages of NGS-based clonality analysis, including its high sensitivity and possibilities for accurate clonal comparison, this supports implementation in diagnostic practice.


Assuntos
Linfócitos B/imunologia , Células Clonais/imunologia , Rearranjo Gênico , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética , Linfoma de Células B/genética , Linfoma Folicular/genética , Confiabilidade dos Dados , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Fenótipo , Sensibilidade e Especificidade
6.
Leukemia ; 33(9): 2227-2240, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31197258

RESUMO

One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics.


Assuntos
Rearranjo Gênico/genética , Genes de Imunoglobulinas/genética , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética , Linfoma de Células B/genética , Transtornos Linfoproliferativos/genética
7.
Leukemia ; 33(9): 2254-2265, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227779

RESUMO

Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.


Assuntos
Marcadores Genéticos/genética , Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Biologia Computacional/métodos , Rearranjo Gênico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasia Residual/genética , Controle de Qualidade , Reprodutibilidade dos Testes
8.
Leukemia ; 33(9): 2241-2253, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243313

RESUMO

Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms has been the focus of intense research, development and application. However, standardization and validation in a scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50 diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC) was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample, range 0-14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0-14). NGS primers covered possible IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based identification of IG/TR markers in lymphoid malignancies.


Assuntos
Rearranjo Gênico do Linfócito T/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Marcadores Genéticos/genética , Imunoglobulinas/genética , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biologia Computacional/métodos , Genes de Imunoglobulinas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Recombinação Genética/genética , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA